Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} + 322 x^{12} - 658 x^{11} + 1106 x^{10} - 1548 x^{9} + 1842 x^{8} - 1886 x^{7} + 1666 x^{6} - 1246 x^{5} + 763 x^{4} - 364 x^{3} + 122 x^{2} - 24 x + 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45514779957485633536=2^{26}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{11} + \frac{1}{10} a^{10} - \frac{2}{5} a^{8} - \frac{1}{10} a^{6} + \frac{2}{5} a^{5} + \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{13} + \frac{1}{20} a^{11} - \frac{1}{4} a^{10} + \frac{3}{20} a^{8} + \frac{9}{20} a^{7} + \frac{1}{5} a^{6} + \frac{7}{20} a^{5} - \frac{7}{20} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{3}{10}$, $\frac{1}{1060} a^{15} + \frac{19}{1060} a^{14} - \frac{8}{265} a^{13} + \frac{17}{1060} a^{12} + \frac{39}{1060} a^{11} + \frac{6}{265} a^{10} + \frac{111}{1060} a^{9} - \frac{247}{1060} a^{8} - \frac{1}{265} a^{7} - \frac{49}{212} a^{6} + \frac{33}{1060} a^{5} - \frac{49}{265} a^{4} + \frac{41}{530} a^{3} + \frac{77}{530} a^{2} - \frac{139}{530} a - \frac{54}{265}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6826.444479 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_8):C_2$ (as 16T126):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $(C_2\times D_8):C_2$ |
| Character table for $(C_2\times D_8):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.2744.1, 4.0.1372.1, 4.0.392.1, 8.0.1686616064.2, 8.0.6746464256.1, 8.0.30118144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 7 | Data not computed | ||||||