Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 24 x^{13} - 528 x^{12} + 3224 x^{11} - 5672 x^{10} - 10936 x^{9} + 65694 x^{8} - 110584 x^{7} + 34688 x^{6} + 155224 x^{5} - 233104 x^{4} + 70808 x^{3} + 129552 x^{2} - 137400 x + 42191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45315174505109995158677487616=2^{62}\cdot 7^{6}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{8}{31} a^{13} + \frac{11}{31} a^{12} + \frac{12}{31} a^{11} + \frac{14}{31} a^{10} + \frac{14}{31} a^{9} + \frac{11}{31} a^{8} + \frac{14}{31} a^{6} + \frac{2}{31} a^{4} + \frac{8}{31} a^{3} - \frac{15}{31} a^{2} - \frac{4}{31} a$, $\frac{1}{93327561494102262165344740773311268833} a^{15} + \frac{30816179960924743418975939849429441}{3010566499809750392430475508816492543} a^{14} - \frac{33171786739183657269550063368930086418}{93327561494102262165344740773311268833} a^{13} + \frac{34899898409719069561368478468451960383}{93327561494102262165344740773311268833} a^{12} - \frac{45057910778358086123413505973914979680}{93327561494102262165344740773311268833} a^{11} - \frac{10014075572956236191187478782123993937}{93327561494102262165344740773311268833} a^{10} - \frac{43663128807771856160798043937484360857}{93327561494102262165344740773311268833} a^{9} - \frac{5525361303633445669526675448863408929}{93327561494102262165344740773311268833} a^{8} + \frac{23229679838316962274150991292300212294}{93327561494102262165344740773311268833} a^{7} + \frac{35626705889902074326613812118318659051}{93327561494102262165344740773311268833} a^{6} - \frac{35806871146784394583572393333225233327}{93327561494102262165344740773311268833} a^{5} + \frac{27735020531724158179770122788931504424}{93327561494102262165344740773311268833} a^{4} + \frac{45483713897659726673863833495475509611}{93327561494102262165344740773311268833} a^{3} - \frac{22916123070729992738199756258909945468}{93327561494102262165344740773311268833} a^{2} + \frac{22763562972959810052215098943220655465}{93327561494102262165344740773311268833} a - \frac{726992909510341948354681954108362466}{3010566499809750392430475508816492543}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18103071.8835 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.0.7168.1, 4.0.14336.1, 8.0.3288334336.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |