Normalized defining polynomial
\( x^{16} - x^{15} + 120 x^{14} - 2105 x^{13} + 123 x^{12} - 251782 x^{11} + 677985 x^{10} - 4367626 x^{9} + 178861490 x^{8} + 422045666 x^{7} + 9472812670 x^{6} + 9793290973 x^{5} + 142759809978 x^{4} - 653503073861 x^{3} + 2727122691361 x^{2} - 17032173590210 x + 30833678218877 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45259126231720831581016789061101452813693889=13^{14}\cdot 101^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $535.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} - \frac{5}{17} a^{10} + \frac{8}{17} a^{7} + \frac{1}{17} a^{6} + \frac{6}{17} a^{5} + \frac{6}{17} a^{4} - \frac{5}{17} a^{3} - \frac{4}{17} a^{2} - \frac{8}{17} a$, $\frac{1}{17} a^{12} - \frac{8}{17} a^{10} + \frac{8}{17} a^{8} + \frac{7}{17} a^{7} - \frac{6}{17} a^{6} + \frac{2}{17} a^{5} + \frac{8}{17} a^{4} + \frac{5}{17} a^{3} + \frac{6}{17} a^{2} - \frac{6}{17} a$, $\frac{1}{17} a^{13} - \frac{6}{17} a^{10} + \frac{8}{17} a^{9} + \frac{7}{17} a^{8} + \frac{7}{17} a^{7} - \frac{7}{17} a^{6} + \frac{5}{17} a^{5} + \frac{2}{17} a^{4} - \frac{4}{17} a^{2} + \frac{4}{17} a$, $\frac{1}{17} a^{14} - \frac{5}{17} a^{10} + \frac{7}{17} a^{9} + \frac{7}{17} a^{8} + \frac{7}{17} a^{7} - \frac{6}{17} a^{6} + \frac{4}{17} a^{5} + \frac{2}{17} a^{4} - \frac{3}{17} a^{2} + \frac{3}{17} a$, $\frac{1}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{15} + \frac{9482322855203639389052916210918048292144769427872894963526586717570860420021072661878599}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{14} + \frac{62975144134424984914656268603532685677029197158263569185412890715691238236896198837394245}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{13} + \frac{31111010733167206970654060476419484860624023196248125699147717244515619316058578418166756}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{12} - \frac{46550529700765198753359033117649075823655630606497642126812480328199373843043001685032455}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{11} + \frac{545191826965095113164342428810790434740014219830630773921950431680552166301912785837476189}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{10} - \frac{1125923825502436919682325058272647325374290383873188762814741212902698632551220828113837359}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{9} - \frac{1321066183228209915369683822495074483482255478826913943990486774762117718231334957181063240}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{8} + \frac{494037429189305137853035232511912710900289332743269991553472544428603610505233472752568134}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{7} + \frac{886070751092084150961634418737430080307853512854972072266178041291188471324987225105615480}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{6} + \frac{1170998093469169041641742141854805271192286678361024899066654337279621777120907893034425144}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{5} - \frac{266899883780834352062837068058547533868472784638069595866424140579980445199606357499963}{1407482578848652496229376574457377250357433073101243218629958452086275101492523773829031} a^{4} + \frac{770645927150451326380574339615029663080498758865169566095353587074802580137074331937605827}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{3} + \frac{1138269282664617285208139143253295830646390988265972360821543923589158538058187923571571758}{2658734591445104565377292349149985625925191075088248439991991515990973666719377408763039559} a^{2} - \frac{21938496437770998556301522656199504348395609232121139504476534977341530254386358285956633}{156396152437947327375134844067646213289717122064014614117175971528880803924669259339002327} a - \frac{255235783855733360619794338262180233590403428097930870625591499227222730172220564011495}{9199773672820431022066755533390953722924536592000859653951527736992988466157015255235431}$
Class group and class number
$C_{2}\times C_{2}\times C_{1824964}$, which has order $7299856$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 303440268.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{1313}) \), \(\Q(\sqrt{13}, \sqrt{101})\), 8.8.5123755016602262209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |