Normalized defining polynomial
\( x^{16} + 510 x^{14} + 88740 x^{12} + 7160400 x^{10} + 294127200 x^{8} + 6179976000 x^{6} + 62361576000 x^{4} + 252817200000 x^{2} + 303380640000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4524961464550316012212224000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(1283,·)$, $\chi_{2040}(769,·)$, $\chi_{2040}(1801,·)$, $\chi_{2040}(587,·)$, $\chi_{2040}(563,·)$, $\chi_{2040}(83,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(1307,·)$, $\chi_{2040}(1441,·)$, $\chi_{2040}(1787,·)$, $\chi_{2040}(169,·)$, $\chi_{2040}(467,·)$, $\chi_{2040}(361,·)$, $\chi_{2040}(1849,·)$, $\chi_{2040}(1403,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{180} a^{4}$, $\frac{1}{180} a^{5}$, $\frac{1}{4320} a^{6} - \frac{1}{4}$, $\frac{1}{4320} a^{7} - \frac{1}{4} a$, $\frac{1}{2203200} a^{8} - \frac{1}{24} a^{2}$, $\frac{1}{2203200} a^{9} - \frac{1}{24} a^{3}$, $\frac{1}{26438400} a^{10} - \frac{1}{4406400} a^{8} - \frac{1}{8640} a^{6} - \frac{1}{1440} a^{4} - \frac{1}{16} a^{2} + \frac{1}{8}$, $\frac{1}{26438400} a^{11} - \frac{1}{4406400} a^{9} - \frac{1}{8640} a^{7} - \frac{1}{1440} a^{5} - \frac{1}{16} a^{3} + \frac{1}{8} a$, $\frac{1}{41243904000} a^{12} - \frac{1}{85924800} a^{10} + \frac{1}{14320800} a^{8} - \frac{7}{224640} a^{6} + \frac{1}{1560} a^{4} + \frac{1}{52} a^{2} + \frac{81}{416}$, $\frac{1}{41243904000} a^{13} - \frac{1}{85924800} a^{11} + \frac{1}{14320800} a^{9} - \frac{7}{224640} a^{7} + \frac{1}{1560} a^{5} + \frac{1}{52} a^{3} + \frac{81}{416} a$, $\frac{1}{247463424000} a^{14} - \frac{1}{85924800} a^{10} - \frac{7}{114566400} a^{8} - \frac{1}{14040} a^{6} - \frac{1}{936} a^{4} - \frac{45}{832} a^{2} + \frac{1}{13}$, $\frac{1}{247463424000} a^{15} - \frac{1}{85924800} a^{11} - \frac{7}{114566400} a^{9} - \frac{1}{14040} a^{7} - \frac{1}{936} a^{5} - \frac{45}{832} a^{3} + \frac{1}{13} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{13192}$, which has order $13508608$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55081.08216847024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 4.4.122825.1, 4.4.4913.1, 8.8.15085980625.1, 8.0.2127195680832000000.1, 8.0.2127195680832000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||