Normalized defining polynomial
\( x^{16} + 12 x^{14} - 20 x^{13} + 138 x^{12} - 240 x^{11} + 1824 x^{10} - 5520 x^{9} + 22020 x^{8} - 34720 x^{7} + 42144 x^{6} - 19920 x^{5} + 5608 x^{4} + 9600 x^{3} + 11232 x^{2} + 4320 x + 1296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45137758519296000000000000=2^{32}\cdot 3^{16}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{60} a^{9} - \frac{1}{60} a^{8} - \frac{7}{30} a^{7} + \frac{1}{15} a^{6} + \frac{1}{10} a^{5} + \frac{7}{30} a^{4} + \frac{4}{15} a^{3} + \frac{1}{15} a^{2} + \frac{4}{15} a + \frac{2}{5}$, $\frac{1}{60} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{60} a^{11} - \frac{1}{60} a^{8} + \frac{1}{6} a^{7} + \frac{7}{30} a^{6} + \frac{7}{30} a^{4} + \frac{1}{3} a^{3} + \frac{1}{15} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{120} a^{12} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{7}{15} a^{2} + \frac{1}{3} a$, $\frac{1}{120} a^{13} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{7}{15} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{4544225640} a^{14} - \frac{345113}{757370940} a^{13} - \frac{959509}{504913960} a^{12} - \frac{4059209}{1136056410} a^{11} - \frac{106771}{189342735} a^{10} - \frac{3816463}{757370940} a^{9} - \frac{2775623}{378685470} a^{8} + \frac{24370963}{189342735} a^{7} - \frac{38235094}{189342735} a^{6} - \frac{16959487}{1136056410} a^{5} - \frac{34273573}{189342735} a^{4} - \frac{15066290}{37868547} a^{3} - \frac{31619471}{113605641} a^{2} - \frac{90012583}{189342735} a - \frac{5730701}{63114245}$, $\frac{1}{590105157405950520} a^{15} - \frac{421783}{32783619855886140} a^{14} - \frac{27080197387163}{19670171913531684} a^{13} - \frac{496148280494333}{147526289351487630} a^{12} - \frac{160406101462793}{49175429783829210} a^{11} + \frac{23366059748201}{98350859567658420} a^{10} - \frac{252364322517353}{98350859567658420} a^{9} + \frac{1083865217311501}{98350859567658420} a^{8} - \frac{2593209718316329}{49175429783829210} a^{7} + \frac{3432634629463402}{73763144675743815} a^{6} + \frac{1203728319018679}{24587714891914605} a^{5} + \frac{151052311216865}{4917542978382921} a^{4} + \frac{10807723427789339}{73763144675743815} a^{3} + \frac{11239197949391872}{24587714891914605} a^{2} - \frac{925484789788441}{8195904963971535} a + \frac{68992833838167}{546393664264769}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{36260866329866}{73763144675743815} a^{15} + \frac{3274332265007}{24587714891914605} a^{14} - \frac{288982085079439}{49175429783829210} a^{13} + \frac{846246983987788}{73763144675743815} a^{12} - \frac{575411138923772}{8195904963971535} a^{11} + \frac{3354012119281894}{24587714891914605} a^{10} - \frac{4554108499875152}{4917542978382921} a^{9} + \frac{58149740444607559}{19670171913531684} a^{8} - \frac{56678331504758456}{4917542978382921} a^{7} + \frac{294271547942267356}{14752628935148763} a^{6} - \frac{205187121197465716}{8195904963971535} a^{5} + \frac{378958486003969568}{24587714891914605} a^{4} - \frac{396086292722139344}{73763144675743815} a^{3} - \frac{88945045923931016}{24587714891914605} a^{2} - \frac{31924432445451848}{8195904963971535} a - \frac{1187265434453216}{2731968321323845} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 740354.925982 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $A_4:C_4$ |
| Character table for $A_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2592000.1, \(\Q(\zeta_{5})\), 8.8.6718464000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |