Properties

Label 16.0.450...000.2
Degree $16$
Signature $[0, 8]$
Discriminant $4.509\times 10^{22}$
Root discriminant \(26.05\)
Ramified primes $2,3,5$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16)
 
gp: K = bnfinit(y^16 - 12*y^14 + 114*y^12 - 312*y^10 + 608*y^8 - 624*y^6 + 456*y^4 - 96*y^2 + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16)
 

\( x^{16} - 12x^{14} + 114x^{12} - 312x^{10} + 608x^{8} - 624x^{6} + 456x^{4} - 96x^{2} + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(45086848686489600000000\) \(\medspace = 2^{44}\cdot 3^{8}\cdot 5^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.05\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}3^{1/2}5^{1/2}\approx 26.054222497305222$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(240=2^{4}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{240}(19,·)$, $\chi_{240}(1,·)$, $\chi_{240}(131,·)$, $\chi_{240}(139,·)$, $\chi_{240}(11,·)$, $\chi_{240}(209,·)$, $\chi_{240}(211,·)$, $\chi_{240}(89,·)$, $\chi_{240}(91,·)$, $\chi_{240}(161,·)$, $\chi_{240}(41,·)$, $\chi_{240}(49,·)$, $\chi_{240}(179,·)$, $\chi_{240}(169,·)$, $\chi_{240}(121,·)$, $\chi_{240}(59,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}$, $\frac{1}{4}a^{9}$, $\frac{1}{4}a^{10}$, $\frac{1}{4}a^{11}$, $\frac{1}{896}a^{12}+\frac{17}{112}a^{6}-\frac{55}{112}$, $\frac{1}{896}a^{13}+\frac{17}{112}a^{7}-\frac{55}{112}a$, $\frac{1}{27776}a^{14}+\frac{11}{27776}a^{12}-\frac{7}{62}a^{10}-\frac{375}{3472}a^{8}+\frac{131}{3472}a^{6}+\frac{6}{31}a^{4}+\frac{1625}{3472}a^{2}-\frac{829}{3472}$, $\frac{1}{27776}a^{15}+\frac{11}{27776}a^{13}-\frac{7}{62}a^{11}-\frac{375}{3472}a^{9}+\frac{131}{3472}a^{7}+\frac{6}{31}a^{5}+\frac{1625}{3472}a^{3}-\frac{829}{3472}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{417}{27776} a^{14} + \frac{4899}{27776} a^{12} - \frac{207}{124} a^{10} + \frac{14891}{3472} a^{8} - \frac{28773}{3472} a^{6} + \frac{483}{62} a^{4} - \frac{21417}{3472} a^{2} + \frac{4507}{3472} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{25}{27776}a^{14}+\frac{213}{27776}a^{12}-\frac{9}{124}a^{10}+\frac{4513}{3472}a^{8}-\frac{1251}{3472}a^{6}+\frac{21}{62}a^{4}+\frac{9377}{3472}a^{2}+\frac{45}{3472}$, $\frac{135}{3472}a^{14}-\frac{761}{1736}a^{12}+\frac{126}{31}a^{10}-\frac{3753}{434}a^{8}+\frac{5409}{434}a^{6}-\frac{216}{31}a^{4}+\frac{639}{434}a^{2}+\frac{44}{217}$, $\frac{439}{27776}a^{14}-\frac{1569}{13888}a^{12}+\frac{29}{31}a^{10}+\frac{10711}{3472}a^{8}-\frac{12925}{1736}a^{6}+\frac{835}{62}a^{4}-\frac{22689}{3472}a^{2}+\frac{2407}{1736}$, $\frac{75}{3968}a^{15}+\frac{417}{27776}a^{14}-\frac{849}{3968}a^{13}-\frac{4899}{27776}a^{12}+\frac{245}{124}a^{11}+\frac{207}{124}a^{10}-\frac{2085}{496}a^{9}-\frac{14891}{3472}a^{8}+\frac{2695}{496}a^{7}+\frac{28773}{3472}a^{6}-\frac{105}{31}a^{5}-\frac{483}{62}a^{4}+\frac{355}{496}a^{3}+\frac{21417}{3472}a^{2}-\frac{857}{496}a+\frac{2437}{3472}$, $\frac{15}{868}a^{15}-\frac{417}{27776}a^{14}-\frac{5353}{27776}a^{13}+\frac{4899}{27776}a^{12}+\frac{56}{31}a^{11}-\frac{207}{124}a^{10}-\frac{834}{217}a^{9}+\frac{14891}{3472}a^{8}+\frac{24471}{3472}a^{7}-\frac{28773}{3472}a^{6}-\frac{96}{31}a^{5}+\frac{483}{62}a^{4}+\frac{142}{217}a^{3}-\frac{21417}{3472}a^{2}+\frac{13295}{3472}a-\frac{2437}{3472}$, $\frac{15}{3472}a^{15}+\frac{13}{6944}a^{14}+\frac{71}{13888}a^{13}+\frac{2215}{27776}a^{12}-\frac{3}{62}a^{11}-\frac{27}{31}a^{10}+\frac{768}{217}a^{9}+\frac{8145}{868}a^{8}-\frac{417}{1736}a^{7}-\frac{52057}{3472}a^{6}+\frac{7}{31}a^{5}+\frac{653}{31}a^{4}+\frac{5713}{434}a^{3}-\frac{1443}{868}a^{2}+\frac{15}{1736}a+\frac{1935}{3472}$, $\frac{417}{27776}a^{15}-\frac{809}{27776}a^{14}-\frac{4899}{27776}a^{13}+\frac{10011}{27776}a^{12}+\frac{207}{124}a^{11}-\frac{423}{124}a^{10}-\frac{14891}{3472}a^{9}+\frac{34295}{3472}a^{8}+\frac{28773}{3472}a^{7}-\frac{58797}{3472}a^{6}-\frac{483}{62}a^{5}+\frac{987}{62}a^{4}+\frac{21417}{3472}a^{3}-\frac{29985}{3472}a^{2}+\frac{2437}{3472}a+\frac{2115}{3472}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 67549.6577055 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 67549.6577055 \cdot 2}{6\cdot\sqrt{45086848686489600000000}}\cr\approx \mathstrut & 0.257582233098 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 12*x^14 + 114*x^12 - 312*x^10 + 608*x^8 - 624*x^6 + 456*x^4 - 96*x^2 + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_4$ (as 16T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-6}, \sqrt{10})\), 4.4.18432.1, 4.0.51200.2, 4.0.2048.2, 4.4.460800.1, 8.0.207360000.1, 8.0.212336640000.3, 8.0.212336640000.1, 8.0.339738624.1, 8.0.212336640000.6, 8.8.212336640000.1, 8.0.2621440000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.2.0.1}{2} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.22.7$x^{8} + 20 x^{7} + 154 x^{6} + 592 x^{5} + 1331 x^{4} + 2128 x^{3} + 2386 x^{2} + 764 x + 103$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
2.8.22.7$x^{8} + 20 x^{7} + 154 x^{6} + 592 x^{5} + 1331 x^{4} + 2128 x^{3} + 2386 x^{2} + 764 x + 103$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$