Normalized defining polynomial
\( x^{16} - 4 x^{15} + 20 x^{14} - 64 x^{13} + 186 x^{12} - 416 x^{11} + 808 x^{10} - 1280 x^{9} + 1766 x^{8} - 2024 x^{7} + 2000 x^{6} - 1592 x^{5} + 1036 x^{4} - 464 x^{3} + 144 x^{2} + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4508684868648960000=2^{40}\cdot 3^{8}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{154} a^{14} - \frac{4}{77} a^{13} + \frac{5}{22} a^{12} + \frac{9}{154} a^{11} + \frac{17}{154} a^{10} - \frac{3}{22} a^{9} - \frac{13}{154} a^{8} - \frac{12}{77} a^{7} + \frac{2}{77} a^{6} + \frac{31}{77} a^{5} - \frac{5}{77} a^{4} + \frac{6}{77} a^{3} - \frac{37}{77} a^{2} - \frac{32}{77} a - \frac{18}{77}$, $\frac{1}{1299546710} a^{15} + \frac{1028743}{1299546710} a^{14} + \frac{94950788}{649773355} a^{13} + \frac{233183043}{1299546710} a^{12} - \frac{161058063}{1299546710} a^{11} + \frac{11303504}{59070305} a^{10} - \frac{180776721}{1299546710} a^{9} - \frac{31928111}{185649530} a^{8} + \frac{301874896}{649773355} a^{7} - \frac{27615246}{129954671} a^{6} + \frac{41055467}{129954671} a^{5} + \frac{93783079}{649773355} a^{4} + \frac{240859691}{649773355} a^{3} - \frac{11934897}{129954671} a^{2} - \frac{128753788}{649773355} a + \frac{280148234}{649773355}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{27279473}{649773355} a^{15} - \frac{76801091}{649773355} a^{14} + \frac{921541451}{1299546710} a^{13} - \frac{1265309226}{649773355} a^{12} + \frac{538234758}{92824765} a^{11} - \frac{15483357807}{1299546710} a^{10} + \frac{15011272322}{649773355} a^{9} - \frac{44433443657}{1299546710} a^{8} + \frac{30248722566}{649773355} a^{7} - \frac{920139665}{18564953} a^{6} + \frac{6148411090}{129954671} a^{5} - \frac{22085791536}{649773355} a^{4} + \frac{13261138656}{649773355} a^{3} - \frac{847189822}{129954671} a^{2} + \frac{1061705892}{649773355} a + \frac{550616219}{649773355} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5843.72447927 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 16T23):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $Q_8 : C_2^2$ |
| Character table for $Q_8 : C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |