Normalized defining polynomial
\( x^{16} - x^{15} + 39 x^{14} + 3 x^{13} + 541 x^{12} + 731 x^{11} + 2681 x^{10} + 10249 x^{9} + 3655 x^{8} + 12964 x^{7} - 18882 x^{6} - 111968 x^{5} - 53641 x^{4} + 8619 x^{3} + 158589 x^{2} + 98172 x + 35559 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45080303137796743213973710214161=19^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{12} - \frac{1}{6} a^{11} + \frac{1}{18} a^{10} - \frac{1}{9} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{9} a^{6} + \frac{1}{6} a^{4} + \frac{7}{18} a^{3} - \frac{1}{9} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18} a^{13} - \frac{1}{9} a^{11} + \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{18} a^{7} + \frac{1}{6} a^{5} - \frac{1}{9} a^{4} + \frac{1}{18} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{15354} a^{14} - \frac{197}{15354} a^{13} - \frac{155}{15354} a^{12} - \frac{491}{7677} a^{11} - \frac{191}{15354} a^{10} - \frac{167}{5118} a^{9} + \frac{226}{7677} a^{8} - \frac{245}{7677} a^{7} + \frac{509}{5118} a^{6} - \frac{4121}{15354} a^{5} - \frac{2507}{7677} a^{4} + \frac{5773}{15354} a^{3} - \frac{773}{5118} a^{2} + \frac{239}{2559} a - \frac{49}{853}$, $\frac{1}{33106595696162407573425697714074} a^{15} + \frac{261334243799426691522612214}{16553297848081203786712848857037} a^{14} + \frac{8265133038795922596306583745}{11035531898720802524475232571358} a^{13} + \frac{95921777765214473567090943287}{5517765949360401262237616285679} a^{12} - \frac{1570081641364750883054889903187}{16553297848081203786712848857037} a^{11} + \frac{2147929947548563523644113002698}{16553297848081203786712848857037} a^{10} - \frac{2011655366233185193264480092065}{16553297848081203786712848857037} a^{9} + \frac{4094911563077280911115790239211}{33106595696162407573425697714074} a^{8} + \frac{5019487042454021217777339977827}{33106595696162407573425697714074} a^{7} + \frac{1236572422901462424289627360922}{16553297848081203786712848857037} a^{6} + \frac{178944540035366412697587158428}{5517765949360401262237616285679} a^{5} - \frac{6765773193014257413418247631220}{16553297848081203786712848857037} a^{4} - \frac{401367303870431191924592366912}{16553297848081203786712848857037} a^{3} - \frac{696974748131124274896228207506}{1839255316453467087412538761893} a^{2} + \frac{310784572054928930190807261575}{3678510632906934174825077523786} a - \frac{9176967733750394575231616437}{613085105484489029137512920631}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 580126353.601 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.226981.1, 4.2.70699.1, 4.2.4312639.1, 8.4.110068634542621.1, 8.0.110068634542621.1, 8.0.18598855144321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |