Properties

Label 16.0.45007165052...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 11^{6}\cdot 101^{4}$
Root discriminant $26.05$
Ramified primes $5, 11, 101$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1276

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![22031, -1481, -34793, 15712, 22632, -18116, -4338, 7846, -1400, -1406, 799, -8, -128, 43, 2, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 2*x^14 + 43*x^13 - 128*x^12 - 8*x^11 + 799*x^10 - 1406*x^9 - 1400*x^8 + 7846*x^7 - 4338*x^6 - 18116*x^5 + 22632*x^4 + 15712*x^3 - 34793*x^2 - 1481*x + 22031)
 
gp: K = bnfinit(x^16 - 5*x^15 + 2*x^14 + 43*x^13 - 128*x^12 - 8*x^11 + 799*x^10 - 1406*x^9 - 1400*x^8 + 7846*x^7 - 4338*x^6 - 18116*x^5 + 22632*x^4 + 15712*x^3 - 34793*x^2 - 1481*x + 22031, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 2 x^{14} + 43 x^{13} - 128 x^{12} - 8 x^{11} + 799 x^{10} - 1406 x^{9} - 1400 x^{8} + 7846 x^{7} - 4338 x^{6} - 18116 x^{5} + 22632 x^{4} + 15712 x^{3} - 34793 x^{2} - 1481 x + 22031 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(45007165052724853515625=5^{12}\cdot 11^{6}\cdot 101^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{72217573240703214935444903959} a^{15} + \frac{1214076499076076826547696421}{72217573240703214935444903959} a^{14} - \frac{12748127761744757242213157472}{72217573240703214935444903959} a^{13} + \frac{28563995276590988829257901234}{72217573240703214935444903959} a^{12} - \frac{25474657090768944795048932788}{72217573240703214935444903959} a^{11} - \frac{32492925477292599161401984127}{72217573240703214935444903959} a^{10} - \frac{35343642080854987895977002403}{72217573240703214935444903959} a^{9} + \frac{21136757417219677413745814134}{72217573240703214935444903959} a^{8} + \frac{17990890239066925055362243540}{72217573240703214935444903959} a^{7} - \frac{22632345174662237618669273171}{72217573240703214935444903959} a^{6} + \frac{15194903721068868993687812121}{72217573240703214935444903959} a^{5} - \frac{24264112946735267811151451534}{72217573240703214935444903959} a^{4} - \frac{9982540066736429446658570466}{72217573240703214935444903959} a^{3} - \frac{5203588635995876224438500837}{72217573240703214935444903959} a^{2} - \frac{23812953797016846811340985793}{72217573240703214935444903959} a + \frac{6698461104856234559300157838}{72217573240703214935444903959}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24556.9638247 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1276:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 43 conjugacy class representatives for t16n1276
Character table for t16n1276 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 8.0.7638125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$101$101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$