Normalized defining polynomial
\( x^{16} - 6 x^{15} + 8 x^{14} - 109 x^{13} + 949 x^{12} - 2325 x^{11} + 2477 x^{10} - 5012 x^{9} + 79004 x^{8} - 169455 x^{7} - 120419 x^{6} + 323596 x^{5} + 1892735 x^{4} - 5978037 x^{3} + 15222337 x^{2} - 16161808 x + 10626213 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4466413296812760910104974161=13^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{26} a^{12} - \frac{3}{13} a^{11} + \frac{4}{13} a^{10} + \frac{4}{13} a^{9} - \frac{11}{26} a^{7} + \frac{7}{26} a^{6} + \frac{3}{13} a^{5} + \frac{3}{26} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{78} a^{13} + \frac{1}{78} a^{12} - \frac{4}{39} a^{11} + \frac{2}{13} a^{10} + \frac{2}{39} a^{9} + \frac{5}{26} a^{8} - \frac{3}{13} a^{7} + \frac{1}{26} a^{6} - \frac{7}{78} a^{5} + \frac{4}{39} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{78} a^{14} - \frac{17}{39} a^{11} - \frac{7}{39} a^{10} + \frac{5}{78} a^{9} - \frac{11}{26} a^{8} - \frac{25}{78} a^{6} - \frac{3}{26} a^{5} + \frac{1}{13} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{84443744471985374313704479156152385465790532490066566} a^{15} + \frac{143788493686119497198287941321935174723406347584831}{84443744471985374313704479156152385465790532490066566} a^{14} - \frac{62470797927232442775632405620111259805124260885}{360870702871732368861984953658770878058933899530199} a^{13} - \frac{492398559309530098859903042760829615820872330067113}{84443744471985374313704479156152385465790532490066566} a^{12} - \frac{1220658219507496690185317571456488558473294404291901}{14073957411997562385617413192692064244298422081677761} a^{11} + \frac{4625853340064632076997182491239309658376383819961719}{28147914823995124771234826385384128488596844163355522} a^{10} + \frac{19954165498664799596857713157836175001795249035277734}{42221872235992687156852239578076192732895266245033283} a^{9} + \frac{398957124407262294092258670081991562696747819560147}{970617752551556026594304358116694085813684281495018} a^{8} - \frac{17838522939870610557617897918446061052900166257931037}{42221872235992687156852239578076192732895266245033283} a^{7} + \frac{40969377217603454428010609715286695517887912054200573}{84443744471985374313704479156152385465790532490066566} a^{6} - \frac{4458062660543710186270020453698381122085865673413689}{9382638274665041590411608795128042829532281387785174} a^{5} - \frac{634932417768397681001357103772819721553298382345425}{3247836325845591319757864582928937902530405095771791} a^{4} - \frac{173837404615648651964492978943462156988886146482197}{721741405743464737723969907317541756117867799060398} a^{3} - \frac{712706198517051882226883158040289032895240385438799}{2165224217230394213171909721952625268353603397181194} a^{2} + \frac{2425027813444776176137972686561233902256932969524985}{6495672651691182639515729165857875805060810191543582} a - \frac{182290902207616815538664729291931129898340090492977}{2165224217230394213171909721952625268353603397181194}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8818748.84847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.294435349.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||