Normalized defining polynomial
\( x^{16} - 6 x^{15} + 9 x^{14} - 7 x^{13} + 4 x^{12} + 471 x^{11} - 1537 x^{10} + 590 x^{9} + 1306 x^{8} - 15861 x^{7} + 89768 x^{6} - 152713 x^{5} + 77250 x^{4} - 2739 x^{3} + 33908 x^{2} - 222270 x + 508743 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4466413296812760910104974161=13^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} - \frac{4}{27} a^{12} - \frac{1}{27} a^{11} - \frac{4}{27} a^{10} + \frac{4}{27} a^{9} + \frac{2}{27} a^{8} + \frac{2}{27} a^{7} + \frac{2}{27} a^{6} - \frac{2}{27} a^{5} + \frac{2}{27} a^{4} - \frac{1}{27} a^{3} - \frac{8}{27} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{462500868628723909341194906517106841511} a^{15} + \frac{8283471009856557232659203835418248287}{462500868628723909341194906517106841511} a^{14} - \frac{8425389013531448807515205785714046540}{154166956209574636447064968839035613837} a^{13} + \frac{9584250447096366803125030007241718444}{462500868628723909341194906517106841511} a^{12} + \frac{43525838008261727068285206081495073258}{462500868628723909341194906517106841511} a^{11} - \frac{16651910744568735049531931534537828081}{154166956209574636447064968839035613837} a^{10} - \frac{17463775726216328340653985033237406280}{154166956209574636447064968839035613837} a^{9} - \frac{70671437496449492336415890244211497482}{462500868628723909341194906517106841511} a^{8} + \frac{72154923156843850200334732648006070761}{462500868628723909341194906517106841511} a^{7} - \frac{33604206518410484544449559247236797831}{154166956209574636447064968839035613837} a^{6} - \frac{19506294633413700303788353277574331600}{154166956209574636447064968839035613837} a^{5} - \frac{7016972894064016639241911905943685939}{462500868628723909341194906517106841511} a^{4} - \frac{19482565351818780213474915393189311606}{154166956209574636447064968839035613837} a^{3} - \frac{168654519956657758933660814055767032826}{462500868628723909341194906517106841511} a^{2} - \frac{33341323019564376071000013206493796846}{154166956209574636447064968839035613837} a + \frac{19524037500846854779812862667340999341}{51388985403191545482354989613011871279}$
Class group and class number
$C_{2}\times C_{2}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 206165.188146 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.8175037.2, 4.4.10309.1, 4.0.134017.1, 8.4.1381581253.1, 8.4.5140863842413.3, 8.0.66831229951369.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||