Normalized defining polynomial
\( x^{16} - 7 x^{15} + 26 x^{14} - 62 x^{13} + 86 x^{12} - 71 x^{11} + 78 x^{10} - 126 x^{9} + 175 x^{8} - 126 x^{7} + 78 x^{6} - 71 x^{5} + 86 x^{4} - 62 x^{3} + 26 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44499647686531640625=3^{12}\cdot 5^{8}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{4}{11} a^{7} + \frac{1}{11} a^{6} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{4}{11} a^{2} + \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{4}{11} a^{9} + \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{1}{11} a^{5} - \frac{1}{11} a^{4} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a - \frac{5}{11}$, $\frac{1}{33} a^{12} + \frac{1}{33} a^{11} + \frac{1}{33} a^{10} + \frac{2}{33} a^{9} - \frac{5}{33} a^{8} - \frac{14}{33} a^{7} - \frac{7}{33} a^{6} - \frac{1}{3} a^{5} + \frac{16}{33} a^{4} + \frac{1}{3} a^{3} + \frac{13}{33} a^{2} - \frac{1}{3} a - \frac{8}{33}$, $\frac{1}{33} a^{13} + \frac{1}{33} a^{10} - \frac{7}{33} a^{9} - \frac{3}{11} a^{8} + \frac{7}{33} a^{7} - \frac{4}{33} a^{6} - \frac{2}{11} a^{5} - \frac{5}{33} a^{4} + \frac{2}{33} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a + \frac{8}{33}$, $\frac{1}{165} a^{14} - \frac{2}{165} a^{11} + \frac{2}{165} a^{10} - \frac{5}{11} a^{9} + \frac{31}{165} a^{8} + \frac{56}{165} a^{7} + \frac{17}{55} a^{6} + \frac{5}{33} a^{5} + \frac{47}{165} a^{4} + \frac{6}{55} a^{3} - \frac{5}{11} a^{2} - \frac{8}{33} a - \frac{3}{55}$, $\frac{1}{5445} a^{15} - \frac{8}{5445} a^{14} - \frac{13}{1089} a^{13} + \frac{1}{1815} a^{12} - \frac{82}{5445} a^{11} + \frac{4}{495} a^{10} - \frac{1319}{5445} a^{9} - \frac{2107}{5445} a^{8} - \frac{1447}{5445} a^{7} - \frac{428}{5445} a^{6} + \frac{97}{495} a^{5} - \frac{1798}{5445} a^{4} - \frac{106}{605} a^{3} - \frac{244}{1089} a^{2} - \frac{404}{5445} a + \frac{1222}{5445}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1120.36474159 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), 4.2.2475.1 x2, 4.0.5445.1 x2, 8.0.741200625.3, 8.2.606436875.2 x4, 8.0.1334161125.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |