Properties

Label 16.0.44499647686...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 5^{8}\cdot 11^{8}$
Root discriminant $16.91$
Ramified primes $3, 5, 11$
Class number $2$
Class group $[2]$
Galois group $D_{8}$ (as 16T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 26, -62, 86, -71, 78, -126, 175, -126, 78, -71, 86, -62, 26, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 26*x^14 - 62*x^13 + 86*x^12 - 71*x^11 + 78*x^10 - 126*x^9 + 175*x^8 - 126*x^7 + 78*x^6 - 71*x^5 + 86*x^4 - 62*x^3 + 26*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^16 - 7*x^15 + 26*x^14 - 62*x^13 + 86*x^12 - 71*x^11 + 78*x^10 - 126*x^9 + 175*x^8 - 126*x^7 + 78*x^6 - 71*x^5 + 86*x^4 - 62*x^3 + 26*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 26 x^{14} - 62 x^{13} + 86 x^{12} - 71 x^{11} + 78 x^{10} - 126 x^{9} + 175 x^{8} - 126 x^{7} + 78 x^{6} - 71 x^{5} + 86 x^{4} - 62 x^{3} + 26 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(44499647686531640625=3^{12}\cdot 5^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{4}{11} a^{7} + \frac{1}{11} a^{6} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{4}{11} a^{2} + \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{4}{11} a^{9} + \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{1}{11} a^{5} - \frac{1}{11} a^{4} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a - \frac{5}{11}$, $\frac{1}{33} a^{12} + \frac{1}{33} a^{11} + \frac{1}{33} a^{10} + \frac{2}{33} a^{9} - \frac{5}{33} a^{8} - \frac{14}{33} a^{7} - \frac{7}{33} a^{6} - \frac{1}{3} a^{5} + \frac{16}{33} a^{4} + \frac{1}{3} a^{3} + \frac{13}{33} a^{2} - \frac{1}{3} a - \frac{8}{33}$, $\frac{1}{33} a^{13} + \frac{1}{33} a^{10} - \frac{7}{33} a^{9} - \frac{3}{11} a^{8} + \frac{7}{33} a^{7} - \frac{4}{33} a^{6} - \frac{2}{11} a^{5} - \frac{5}{33} a^{4} + \frac{2}{33} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a + \frac{8}{33}$, $\frac{1}{165} a^{14} - \frac{2}{165} a^{11} + \frac{2}{165} a^{10} - \frac{5}{11} a^{9} + \frac{31}{165} a^{8} + \frac{56}{165} a^{7} + \frac{17}{55} a^{6} + \frac{5}{33} a^{5} + \frac{47}{165} a^{4} + \frac{6}{55} a^{3} - \frac{5}{11} a^{2} - \frac{8}{33} a - \frac{3}{55}$, $\frac{1}{5445} a^{15} - \frac{8}{5445} a^{14} - \frac{13}{1089} a^{13} + \frac{1}{1815} a^{12} - \frac{82}{5445} a^{11} + \frac{4}{495} a^{10} - \frac{1319}{5445} a^{9} - \frac{2107}{5445} a^{8} - \frac{1447}{5445} a^{7} - \frac{428}{5445} a^{6} + \frac{97}{495} a^{5} - \frac{1798}{5445} a^{4} - \frac{106}{605} a^{3} - \frac{244}{1089} a^{2} - \frac{404}{5445} a + \frac{1222}{5445}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1120.36474159 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_8$ (as 16T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 7 conjugacy class representatives for $D_{8}$
Character table for $D_{8}$

Intermediate fields

\(\Q(\sqrt{-55}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), 4.2.2475.1 x2, 4.0.5445.1 x2, 8.0.741200625.3, 8.2.606436875.2 x4, 8.0.1334161125.1 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$