Normalized defining polynomial
\( x^{16} - 2 x^{15} - 30 x^{14} + 170 x^{13} + 493 x^{12} - 3932 x^{11} + 151484 x^{10} - 772973 x^{9} + 5788342 x^{8} - 18480176 x^{7} + 108110739 x^{6} - 141573402 x^{5} + 995637614 x^{4} - 80045271 x^{3} + 5798763048 x^{2} + 1158532737 x + 10143812191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(443324403828803432927172239238695761=41^{14}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{86} a^{12} + \frac{6}{43} a^{11} - \frac{16}{43} a^{10} - \frac{9}{86} a^{9} + \frac{1}{43} a^{8} - \frac{17}{86} a^{6} + \frac{2}{43} a^{5} + \frac{8}{43} a^{4} - \frac{1}{2} a^{3} + \frac{2}{43} a^{2} + \frac{6}{43} a + \frac{11}{86}$, $\frac{1}{44978} a^{13} + \frac{63}{22489} a^{12} - \frac{1310}{22489} a^{11} + \frac{10963}{44978} a^{10} + \frac{10797}{22489} a^{9} + \frac{9789}{22489} a^{8} + \frac{14001}{44978} a^{7} - \frac{5310}{22489} a^{6} + \frac{9094}{22489} a^{5} - \frac{6991}{44978} a^{4} - \frac{1417}{22489} a^{3} + \frac{5523}{22489} a^{2} + \frac{7399}{44978} a - \frac{7285}{22489}$, $\frac{1}{3449822180314} a^{14} + \frac{16107749}{3449822180314} a^{13} - \frac{15907249599}{3449822180314} a^{12} - \frac{1095300131941}{3449822180314} a^{11} - \frac{164305768909}{3449822180314} a^{10} + \frac{323551747699}{3449822180314} a^{9} + \frac{1250592645}{3449822180314} a^{8} + \frac{7819450951}{80228422798} a^{7} - \frac{920987759005}{3449822180314} a^{6} - \frac{518909577537}{3449822180314} a^{5} + \frac{823282315451}{3449822180314} a^{4} - \frac{1691087599911}{3449822180314} a^{3} + \frac{1081932876895}{3449822180314} a^{2} - \frac{1610518563287}{3449822180314} a + \frac{1164487442353}{3449822180314}$, $\frac{1}{347723734899841445271611949336494965113597898802189864758} a^{15} + \frac{10403308096187849797829837901063058174681727}{173861867449920722635805974668247482556798949401094932379} a^{14} + \frac{277385426675508538826167742962217821887271011677757}{173861867449920722635805974668247482556798949401094932379} a^{13} + \frac{249058526042729571638465646531140438014917516701447683}{347723734899841445271611949336494965113597898802189864758} a^{12} - \frac{77544283841554456466429578340718095196780772494491893966}{173861867449920722635805974668247482556798949401094932379} a^{11} - \frac{71213633240793346211433311667067672256490064170153929776}{173861867449920722635805974668247482556798949401094932379} a^{10} + \frac{2864978151685638154328200695612100395787593603803850555}{347723734899841445271611949336494965113597898802189864758} a^{9} - \frac{55562347040011813706159599133568172303780610282756293659}{173861867449920722635805974668247482556798949401094932379} a^{8} - \frac{62704784094997591172162893334529186621964779366158586659}{173861867449920722635805974668247482556798949401094932379} a^{7} + \frac{54590381827392871161797268793741965913492694999040677463}{347723734899841445271611949336494965113597898802189864758} a^{6} + \frac{6020290994429228053265785622202867501654241358474631693}{173861867449920722635805974668247482556798949401094932379} a^{5} + \frac{21219397297595324677138712219373709229708734384891750393}{173861867449920722635805974668247482556798949401094932379} a^{4} - \frac{89473989335325357640406256635544193468863271549999885289}{347723734899841445271611949336494965113597898802189864758} a^{3} - \frac{34214248726801064576045377302878896523976999934895994531}{173861867449920722635805974668247482556798949401094932379} a^{2} - \frac{46487173321871924292735073101731382397190395597687347828}{173861867449920722635805974668247482556798949401094932379} a + \frac{82106772022822726182817795062896733636001404744425174141}{173861867449920722635805974668247482556798949401094932379}$
Class group and class number
$C_{1740}$, which has order $1740$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70797623.7718 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-1763}) \), \(\Q(\sqrt{41}, \sqrt{-43})\), 4.4.68921.1, 4.0.127434929.2, 8.0.16239661129235041.1, 8.4.360100652405969.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |