Normalized defining polynomial
\( x^{16} + 1776 x^{14} + 1082972 x^{12} + 294264512 x^{10} + 40150581314 x^{8} + 2864580268288 x^{6} + 103065013482464 x^{4} + 1588496435904000 x^{2} + 5543020491743296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44272035895977179125717718174809351883063296=2^{62}\cdot 127^{4}\cdot 577^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $534.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{508} a^{10} - \frac{1}{254} a^{8} - \frac{21}{127} a^{6} - \frac{19}{127} a^{4} + \frac{99}{254} a^{2}$, $\frac{1}{508} a^{11} - \frac{1}{254} a^{9} - \frac{21}{127} a^{7} - \frac{19}{127} a^{5} + \frac{99}{254} a^{3}$, $\frac{1}{129032} a^{12} - \frac{1}{64516} a^{10} - \frac{2561}{32258} a^{8} - \frac{4645}{16129} a^{6} - \frac{20983}{64516} a^{4} - \frac{63}{254} a^{2}$, $\frac{1}{258064} a^{13} + \frac{63}{64516} a^{11} + \frac{13441}{64516} a^{9} - \frac{3656}{16129} a^{7} + \frac{33881}{129032} a^{5} - \frac{109}{254} a^{3}$, $\frac{1}{1090839553459839056045946125698603672038009095408} a^{14} - \frac{586868868276092700564913131555130656284727}{272709888364959764011486531424650918009502273852} a^{12} - \frac{167208881234068692860144984835418303506202555}{272709888364959764011486531424650918009502273852} a^{10} + \frac{7335147553595710465899863295838712803555647906}{68177472091239941002871632856162729502375568463} a^{8} - \frac{269565211482876803882851068792907270555825871735}{545419776729919528022973062849301836019004547704} a^{6} - \frac{324975770379831974428731947852144284321071131}{1073660977814802220517663509545869755942922338} a^{4} - \frac{1016260676586321331931729533881937953107303}{4227011723680323702825446887975865180877647} a^{2} + \frac{6879833090394075349463156297523660059}{57683807416590342428600920972937201393}$, $\frac{1}{2181679106919678112091892251397207344076018190816} a^{15} - \frac{586868868276092700564913131555130656284727}{545419776729919528022973062849301836019004547704} a^{13} - \frac{167208881234068692860144984835418303506202555}{545419776729919528022973062849301836019004547704} a^{11} + \frac{3667573776797855232949931647919356401777823953}{68177472091239941002871632856162729502375568463} a^{9} + \frac{275854565247042724140121994056394565463178675969}{1090839553459839056045946125698603672038009095408} a^{7} + \frac{748685207434970246088931561693725471621851207}{2147321955629604441035327019091739511885844676} a^{5} - \frac{1016260676586321331931729533881937953107303}{8454023447360647405650893775951730361755294} a^{3} - \frac{25401987163098133539568882337706770667}{57683807416590342428600920972937201393} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{43619632}$, which has order $5583312896$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 994324.851518 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:Q_8.C_2^3$ (as 16T520):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_4:Q_8.C_2^3$ |
| Character table for $C_4:Q_8.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1396405436416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.33 | $x^{8} + 12 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ |
| 2.8.31.33 | $x^{8} + 12 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ | |
| 127 | Data not computed | ||||||
| 577 | Data not computed | ||||||