Normalized defining polynomial
\( x^{16} - 4 x^{15} + 33 x^{14} - 256 x^{13} + 1002 x^{12} - 3750 x^{11} + 19159 x^{10} - 60643 x^{9} + 129678 x^{8} - 385606 x^{7} + 1010979 x^{6} - 621919 x^{5} - 1198369 x^{4} - 3332401 x^{3} + 20600666 x^{2} - 29838288 x + 14591551 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(441573073857633665833769108097=3^{8}\cdot 97^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{103} a^{14} - \frac{1}{103} a^{13} + \frac{2}{103} a^{12} - \frac{16}{103} a^{11} - \frac{29}{103} a^{10} + \frac{10}{103} a^{9} + \frac{19}{103} a^{8} + \frac{7}{103} a^{7} + \frac{5}{103} a^{6} + \frac{51}{103} a^{5} + \frac{47}{103} a^{4} + \frac{47}{103} a^{3} - \frac{6}{103} a^{2} - \frac{37}{103} a + \frac{2}{103}$, $\frac{1}{1019715447364976396034706663824338211444440384380979} a^{15} - \frac{3690099416508988598000839925632973275118549628306}{1019715447364976396034706663824338211444440384380979} a^{14} + \frac{197843417278220553504887959820958342998402707917500}{1019715447364976396034706663824338211444440384380979} a^{13} - \frac{127577271670718735664876606811285796618750185511382}{1019715447364976396034706663824338211444440384380979} a^{12} + \frac{364998511794004194261642074814335397803598102823317}{1019715447364976396034706663824338211444440384380979} a^{11} - \frac{172447592304266969203744039325672856684111542911666}{1019715447364976396034706663824338211444440384380979} a^{10} - \frac{22987240562156567990246584430375300361837748266970}{78439649797305876618054358755718323957264644952383} a^{9} + \frac{182765214866086137592993432741208715763216083681502}{1019715447364976396034706663824338211444440384380979} a^{8} - \frac{373471306627120230859235481109878137323219676225255}{1019715447364976396034706663824338211444440384380979} a^{7} - \frac{230254873167913858093671762455574345293981141460784}{1019715447364976396034706663824338211444440384380979} a^{6} + \frac{91249832574475451640911964350553434120917907580775}{1019715447364976396034706663824338211444440384380979} a^{5} - \frac{209878800693158297801784348822642276833551532236091}{1019715447364976396034706663824338211444440384380979} a^{4} - \frac{424261504186440697622460407904344749546397402130636}{1019715447364976396034706663824338211444440384380979} a^{3} - \frac{340091528949940178950754189563332635211374374010284}{1019715447364976396034706663824338211444440384380979} a^{2} + \frac{246206933596462209915481867849414869894035056101336}{1019715447364976396034706663824338211444440384380979} a + \frac{6264971317582434261891854204861151361829004715357}{78439649797305876618054358755718323957264644952383}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{73765450669752614272628988}{124340609372761150192765954666289} a^{15} - \frac{240893508237771447774855152}{124340609372761150192765954666289} a^{14} + \frac{2173605576895009187417460473}{124340609372761150192765954666289} a^{13} - \frac{17196970752061612691051408232}{124340609372761150192765954666289} a^{12} + \frac{59133330734452939663188136874}{124340609372761150192765954666289} a^{11} - \frac{218317403959240283104627291120}{124340609372761150192765954666289} a^{10} + \frac{1223100456730333835433716015985}{124340609372761150192765954666289} a^{9} - \frac{3406437740278623250086637425365}{124340609372761150192765954666289} a^{8} + \frac{6116819097393548069741472151569}{124340609372761150192765954666289} a^{7} - \frac{22536009843845240676880328064903}{124340609372761150192765954666289} a^{6} + \frac{55606321868310804099954857824481}{124340609372761150192765954666289} a^{5} + \frac{11503300957929471530479821982423}{124340609372761150192765954666289} a^{4} - \frac{91461475927673429745630113635820}{124340609372761150192765954666289} a^{3} - \frac{381725118617995318166719191446540}{124340609372761150192765954666289} a^{2} + \frac{1235492314328506477844616208029726}{124340609372761150192765954666289} a - \frac{849512977891019840946334934696650}{124340609372761150192765954666289} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103534343.224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.873.1, 8.0.695574560817.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $97$ | 97.8.6.4 | $x^{8} + 1358 x^{4} + 1176125$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 97.8.7.5 | $x^{8} + 485$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |