Normalized defining polynomial
\( x^{16} - 2 x^{15} - 72 x^{14} + 35 x^{13} + 1730 x^{12} + 1148 x^{11} - 13574 x^{10} - 13264 x^{9} + 62090 x^{8} + 91739 x^{7} + 59197 x^{6} + 222822 x^{5} + 337044 x^{4} - 93725 x^{3} + 157928 x^{2} + 79985 x + 87721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(441573073857633665833769108097=3^{8}\cdot 97^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{962983920835710704386594201628098159861367715773} a^{15} + \frac{151661597968671546894837480237339088548066843159}{962983920835710704386594201628098159861367715773} a^{14} + \frac{474825016579997423504101681954468256809786297360}{962983920835710704386594201628098159861367715773} a^{13} - \frac{252478898715124893002352306276203895012641460254}{962983920835710704386594201628098159861367715773} a^{12} - \frac{319341840780444890575577329902556095041971366947}{962983920835710704386594201628098159861367715773} a^{11} - \frac{108264278800289011808576998414582427787808527923}{962983920835710704386594201628098159861367715773} a^{10} + \frac{177037298257555752254606938531248382337855039102}{962983920835710704386594201628098159861367715773} a^{9} - \frac{96497359861604888538605026024280978290730645835}{962983920835710704386594201628098159861367715773} a^{8} - \frac{18419656116876753980178660913904306007216243498}{962983920835710704386594201628098159861367715773} a^{7} + \frac{382127055915696022020118353751196006914293694927}{962983920835710704386594201628098159861367715773} a^{6} - \frac{128140171508256801156945601633562375298221863327}{962983920835710704386594201628098159861367715773} a^{5} - \frac{158302012761801407131399693983276060041165102785}{962983920835710704386594201628098159861367715773} a^{4} + \frac{135656674561513538928328853955610692279988948695}{962983920835710704386594201628098159861367715773} a^{3} + \frac{141960535734200598164324042832944172467218606277}{962983920835710704386594201628098159861367715773} a^{2} - \frac{113310692292001139857700598220795337332289747783}{962983920835710704386594201628098159861367715773} a - \frac{117387518655688097609603961710165665565018945180}{962983920835710704386594201628098159861367715773}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2475638524556353805067203}{725586800318428447068314216129} a^{15} - \frac{7831173201742465246578600}{725586800318428447068314216129} a^{14} - \frac{172262284349322798908248744}{725586800318428447068314216129} a^{13} + \frac{292259433104916196866827210}{725586800318428447068314216129} a^{12} + \frac{4171342826626793490753196657}{725586800318428447068314216129} a^{11} - \frac{2049010912259052100256315358}{725586800318428447068314216129} a^{10} - \frac{36767717137095873364159817340}{725586800318428447068314216129} a^{9} + \frac{4712633925790957324158665750}{725586800318428447068314216129} a^{8} + \frac{192276702719408665524693806164}{725586800318428447068314216129} a^{7} + \frac{57038615102003250817917753016}{725586800318428447068314216129} a^{6} - \frac{129790372624164160805174898044}{725586800318428447068314216129} a^{5} + \frac{367239234383181361919430939211}{725586800318428447068314216129} a^{4} + \frac{271498001454160684966409591561}{725586800318428447068314216129} a^{3} - \frac{1360238530301925428731835758362}{725586800318428447068314216129} a^{2} + \frac{381412522245624557704659609374}{725586800318428447068314216129} a + \frac{296077233591924523970722728333}{725586800318428447068314216129} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56013234.4844 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.873.1, 8.0.695574560817.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $97$ | 97.8.7.7 | $x^{8} + 303125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.6.3 | $x^{8} - 97 x^{4} + 47045$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |