Normalized defining polynomial
\( x^{16} - 7 x^{15} - 26 x^{14} + 198 x^{13} + 1238 x^{12} - 7747 x^{11} - 17774 x^{10} + 172969 x^{9} - 70297 x^{8} - 1752687 x^{7} + 4428414 x^{6} - 2245971 x^{5} + 1841738 x^{4} - 22015584 x^{3} + 35345376 x^{2} - 11444301 x + 1185921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4414801218324694314062500000000=2^{8}\cdot 5^{14}\cdot 29^{6}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{88} a^{12} + \frac{5}{88} a^{11} - \frac{9}{88} a^{10} - \frac{15}{88} a^{9} - \frac{9}{44} a^{8} - \frac{25}{88} a^{7} - \frac{41}{88} a^{6} - \frac{17}{88} a^{5} - \frac{5}{44} a^{4} + \frac{15}{88} a^{3} - \frac{5}{88} a^{2} + \frac{41}{88} a - \frac{1}{8}$, $\frac{1}{264} a^{13} - \frac{1}{264} a^{12} - \frac{17}{264} a^{11} - \frac{9}{88} a^{10} - \frac{2}{33} a^{9} + \frac{17}{264} a^{8} - \frac{23}{264} a^{7} - \frac{35}{264} a^{6} + \frac{23}{66} a^{5} - \frac{19}{88} a^{4} - \frac{39}{88} a^{3} - \frac{35}{88} a^{2} + \frac{29}{264} a - \frac{1}{2}$, $\frac{1}{1584} a^{14} + \frac{1}{792} a^{13} + \frac{1}{1584} a^{12} - \frac{19}{176} a^{11} - \frac{1}{72} a^{10} + \frac{91}{792} a^{9} + \frac{61}{396} a^{8} - \frac{299}{1584} a^{7} - \frac{103}{396} a^{6} + \frac{5}{11} a^{5} + \frac{5}{22} a^{4} - \frac{91}{528} a^{3} - \frac{787}{1584} a^{2} - \frac{17}{88} a - \frac{1}{16}$, $\frac{1}{1025889877084386554223191033631511858945488432} a^{15} - \frac{4034037927493992449523197518228327655707}{1025889877084386554223191033631511858945488432} a^{14} + \frac{197212518391369165549885267179589933154875}{1025889877084386554223191033631511858945488432} a^{13} + \frac{25730108470815411142675815761827190802995}{5181262005476699768803995119351069994674184} a^{12} + \frac{57267717925800021825726015923617626570351827}{1025889877084386554223191033631511858945488432} a^{11} + \frac{8277588139090534719265371221928278981790715}{512944938542193277111595516815755929472744216} a^{10} + \frac{20690599926833477047031761914982099592555491}{256472469271096638555797758407877964736372108} a^{9} - \frac{116270149262886368073606306471228384887830871}{1025889877084386554223191033631511858945488432} a^{8} + \frac{102691360789863467784010529726633894743586285}{1025889877084386554223191033631511858945488432} a^{7} + \frac{2066990619293270102882072924973901585823363}{56993882060243697456843946312861769941416024} a^{6} - \frac{8119320914051407316529003650480821517266835}{18997960686747899152281315437620589980472008} a^{5} + \frac{127674664117712129443639657921948668151373273}{341963292361462184741063677877170619648496144} a^{4} + \frac{51918893688457699705558482951949227565429733}{256472469271096638555797758407877964736372108} a^{3} + \frac{19024697073525374538719599930202001043743091}{113987764120487394913687892625723539882832048} a^{2} + \frac{1223908997469881399111809959295895453485003}{10362524010953399537607990238702139989348368} a - \frac{18037207564667219462109956511353912848245}{314015879119799985988120916324307272404496}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2057955652828690545976305185033404279}{2436793057207569012406629533566536482055792} a^{15} + \frac{764221941122371538228172286477376200}{152299566075473063275414345847908530128487} a^{14} + \frac{67530626677021455517979286861355510301}{2436793057207569012406629533566536482055792} a^{13} - \frac{3353200432688579812868352939594741413}{24614071284924939519258884177439762445008} a^{12} - \frac{1475891018057059965124572131159744124661}{1218396528603784506203314766783268241027896} a^{11} + \frac{784556943669372369117162619265825175838}{152299566075473063275414345847908530128487} a^{10} + \frac{25625322062518352116568756172617002261015}{1218396528603784506203314766783268241027896} a^{9} - \frac{293065967849008260522985253322331449721927}{2436793057207569012406629533566536482055792} a^{8} - \frac{23791422108722690280729982709815349159695}{304599132150946126550828691695817060256974} a^{7} + \frac{181933671830805871484383554283327073982887}{135377392067087167355923862975918693447544} a^{6} - \frac{293564766908787681161369347765378688670853}{135377392067087167355923862975918693447544} a^{5} + \frac{4170817701263502090157146261149830309693}{812264352402523004135543177855512160685264} a^{4} - \frac{6617201468257831733397888710889371256117035}{2436793057207569012406629533566536482055792} a^{3} + \frac{1975036559560769718394844060504356554513883}{135377392067087167355923862975918693447544} a^{2} - \frac{319009291667454515950235902224831542548427}{24614071284924939519258884177439762445008} a + \frac{134249298036886926973139025135794063249}{46617559251751779392535765487575307661} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61162681.6721 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.148625.2, \(\Q(\zeta_{5})\), 4.0.29725.2, 8.0.22089390625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||