Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 168 x^{12} - 276 x^{11} + 370 x^{10} - 384 x^{9} + 295 x^{8} - 164 x^{7} + 78 x^{6} - 60 x^{5} + 62 x^{4} - 40 x^{3} + 14 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(440301256704000000=2^{32}\cdot 3^{8}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55} a^{14} + \frac{21}{55} a^{13} - \frac{18}{55} a^{12} + \frac{4}{11} a^{11} + \frac{3}{11} a^{10} + \frac{14}{55} a^{9} + \frac{21}{55} a^{8} + \frac{19}{55} a^{7} - \frac{13}{55} a^{6} - \frac{27}{55} a^{5} - \frac{3}{55} a^{4} - \frac{9}{55} a^{3} + \frac{18}{55} a^{2} - \frac{2}{5} a - \frac{1}{55}$, $\frac{1}{894245} a^{15} - \frac{351}{178849} a^{14} - \frac{332114}{894245} a^{13} + \frac{1538}{81295} a^{12} + \frac{62441}{178849} a^{11} + \frac{67039}{894245} a^{10} + \frac{29332}{894245} a^{9} + \frac{443973}{894245} a^{8} - \frac{131272}{894245} a^{7} + \frac{226451}{894245} a^{6} + \frac{379}{81295} a^{5} + \frac{407204}{894245} a^{4} - \frac{102853}{894245} a^{3} + \frac{23951}{178849} a^{2} - \frac{316339}{894245} a - \frac{356879}{894245}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5652364}{894245} a^{15} + \frac{41727111}{894245} a^{14} - \frac{155011478}{894245} a^{13} + \frac{75688198}{178849} a^{12} - \frac{12975562}{16259} a^{11} + \frac{101264864}{81295} a^{10} - \frac{1392977744}{894245} a^{9} + \frac{1293447214}{894245} a^{8} - \frac{847056648}{894245} a^{7} + \frac{382170398}{894245} a^{6} - \frac{187970568}{894245} a^{5} + \frac{213637051}{894245} a^{4} - \frac{19510592}{81295} a^{3} + \frac{91228733}{894245} a^{2} - \frac{20479676}{894245} a + \frac{1650439}{178849} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 925.520714294 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_8:C_2$ |
| Character table for $D_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), 4.0.2880.1, 4.0.320.1, \(\Q(\zeta_{12})\), 8.0.8294400.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |