Normalized defining polynomial
\( x^{16} - x^{15} - 12 x^{14} + 9 x^{13} + 180 x^{12} - 93 x^{11} - 2514 x^{10} + 4185 x^{9} + 12140 x^{8} - 38510 x^{7} + 7604 x^{6} + 88051 x^{5} - 85833 x^{4} - 79769 x^{3} + 138810 x^{2} - 21672 x + 1849 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(440166027395300672133281640625=5^{8}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{505} a^{12} + \frac{209}{505} a^{11} + \frac{4}{101} a^{10} - \frac{68}{505} a^{9} - \frac{131}{505} a^{8} - \frac{193}{505} a^{7} + \frac{24}{505} a^{6} + \frac{47}{505} a^{5} + \frac{184}{505} a^{4} + \frac{232}{505} a^{3} + \frac{3}{505} a^{2} - \frac{227}{505} a + \frac{84}{505}$, $\frac{1}{505} a^{13} - \frac{231}{505} a^{11} - \frac{208}{505} a^{10} - \frac{59}{505} a^{9} - \frac{84}{505} a^{8} - \frac{39}{505} a^{7} + \frac{81}{505} a^{6} - \frac{44}{505} a^{5} + \frac{156}{505} a^{4} - \frac{1}{101} a^{3} + \frac{156}{505} a^{2} + \frac{57}{505} a + \frac{119}{505}$, $\frac{1}{6565} a^{14} + \frac{1}{6565} a^{13} - \frac{1}{1313} a^{12} + \frac{370}{1313} a^{11} - \frac{292}{6565} a^{10} + \frac{2164}{6565} a^{9} - \frac{439}{6565} a^{8} - \frac{3176}{6565} a^{7} - \frac{2114}{6565} a^{6} + \frac{129}{6565} a^{5} + \frac{267}{1313} a^{4} - \frac{947}{6565} a^{3} + \frac{1901}{6565} a^{2} - \frac{1636}{6565} a + \frac{418}{6565}$, $\frac{1}{4676228004014482658739499945} a^{15} + \frac{234991281433461818071163}{4676228004014482658739499945} a^{14} - \frac{87269370418912705706}{106077807862769835508915} a^{13} - \frac{4328923541248813251637147}{4676228004014482658739499945} a^{12} + \frac{16360316820489530700096059}{935245600802896531747899989} a^{11} + \frac{155133383405299903423040393}{935245600802896531747899989} a^{10} - \frac{450783918383459326150599539}{935245600802896531747899989} a^{9} + \frac{1920438405528363152988632893}{4676228004014482658739499945} a^{8} + \frac{264979389051428029647491950}{935245600802896531747899989} a^{7} - \frac{1973740611972354951950234532}{4676228004014482658739499945} a^{6} - \frac{907850145579583483328443726}{4676228004014482658739499945} a^{5} - \frac{404126861028064296963303698}{935245600802896531747899989} a^{4} + \frac{26063292892572713665326636}{359709846462652512210730765} a^{3} + \frac{302450974331257982554716437}{935245600802896531747899989} a^{2} + \frac{292544329071213214863997589}{935245600802896531747899989} a + \frac{44936563222424811629156201}{108749488465453085086965115}$
Class group and class number
$C_{10}\times C_{10}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2201007.40426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.51005.1, 4.0.1030301.1, 4.0.5151505.1, 8.4.6568812813125.3, 8.4.6568812813125.1, 8.0.26538003765025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |