Normalized defining polynomial
\( x^{16} - 8 x^{15} + 108 x^{14} - 616 x^{13} + 4918 x^{12} - 21864 x^{11} + 129180 x^{10} - 459208 x^{9} + 2169447 x^{8} - 6139592 x^{7} + 23986068 x^{6} - 52182408 x^{5} + 170888666 x^{4} - 261158920 x^{3} + 718599116 x^{2} - 595814888 x + 1365774814 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43973667993577319434061585842176=2^{48}\cdot 3^{8}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2256=2^{4}\cdot 3\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2256}(1,·)$, $\chi_{2256}(1223,·)$, $\chi_{2256}(1033,·)$, $\chi_{2256}(2255,·)$, $\chi_{2256}(659,·)$, $\chi_{2256}(469,·)$, $\chi_{2256}(1691,·)$, $\chi_{2256}(1693,·)$, $\chi_{2256}(95,·)$, $\chi_{2256}(1127,·)$, $\chi_{2256}(1129,·)$, $\chi_{2256}(2161,·)$, $\chi_{2256}(563,·)$, $\chi_{2256}(565,·)$, $\chi_{2256}(1787,·)$, $\chi_{2256}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{298903403047874259977} a^{14} - \frac{7}{298903403047874259977} a^{13} - \frac{9276848494733540721}{298903403047874259977} a^{12} + \frac{55661090968401244417}{298903403047874259977} a^{11} - \frac{89382536612221574297}{298903403047874259977} a^{10} - \frac{63313984149236869171}{298903403047874259977} a^{9} + \frac{41213040278844815181}{298903403047874259977} a^{8} - \frac{69406464711167136756}{298903403047874259977} a^{7} - \frac{7362051250028451796}{298903403047874259977} a^{6} + \frac{134076553779647444571}{298903403047874259977} a^{5} + \frac{17691064046336745247}{298903403047874259977} a^{4} + \frac{142763942577545401789}{298903403047874259977} a^{3} + \frac{38407925458714760760}{298903403047874259977} a^{2} + \frac{107831671155771420759}{298903403047874259977} a + \frac{92573041183470389649}{298903403047874259977}$, $\frac{1}{2677361772956066199281042537} a^{15} + \frac{4478633}{2677361772956066199281042537} a^{14} + \frac{1186736769650932775370311853}{2677361772956066199281042537} a^{13} + \frac{2853078832538741088153121}{27601667762433672157536521} a^{12} + \frac{945239132075717209662926418}{2677361772956066199281042537} a^{11} - \frac{1035909430430035443389277361}{2677361772956066199281042537} a^{10} + \frac{13866734961689545334643781}{116407033606785486925262719} a^{9} - \frac{539868496397897150274478230}{2677361772956066199281042537} a^{8} + \frac{18895755214850477555793722}{116407033606785486925262719} a^{7} + \frac{665797059926370602413538306}{2677361772956066199281042537} a^{6} - \frac{2619464747911008805664062}{27601667762433672157536521} a^{5} - \frac{154514595986652163263227809}{2677361772956066199281042537} a^{4} - \frac{32050029305735420299426483}{2677361772956066199281042537} a^{3} + \frac{369731610928972914397093303}{2677361772956066199281042537} a^{2} - \frac{1164094941786842128945346703}{2677361772956066199281042537} a + \frac{1244649798458420640494266843}{2677361772956066199281042537}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{40}\times C_{40}$, which has order $409600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |