Normalized defining polynomial
\( x^{16} - 3 x^{15} + 5 x^{14} - 6 x^{13} + 6 x^{12} - 6 x^{11} + 4 x^{10} - x^{8} + 4 x^{6} + 6 x^{5} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(4393378612917909\)
\(\medspace = 3^{8}\cdot 61\cdot 104773^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.50\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}61^{1/2}104773^{1/2}\approx 4378.75084927197$ | ||
Ramified primes: |
\(3\), \(61\), \(104773\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{61}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{779}a^{14}-\frac{172}{779}a^{13}+\frac{251}{779}a^{12}+\frac{248}{779}a^{11}-\frac{368}{779}a^{10}+\frac{6}{41}a^{9}-\frac{155}{779}a^{8}-\frac{177}{779}a^{7}+\frac{155}{779}a^{6}+\frac{6}{41}a^{5}+\frac{368}{779}a^{4}+\frac{248}{779}a^{3}-\frac{251}{779}a^{2}-\frac{172}{779}a-\frac{1}{779}$, $\frac{1}{779}a^{15}+\frac{269}{779}a^{13}-\frac{204}{779}a^{12}+\frac{222}{779}a^{11}-\frac{83}{779}a^{10}-\frac{22}{779}a^{9}-\frac{351}{779}a^{8}+\frac{92}{779}a^{7}+\frac{288}{779}a^{6}-\frac{278}{779}a^{5}-\frac{334}{779}a^{4}+\frac{339}{779}a^{3}+\frac{280}{779}a^{2}+\frac{17}{779}a-\frac{172}{779}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{9}{41} a^{14} - \frac{31}{41} a^{13} + \frac{45}{41} a^{12} - \frac{23}{41} a^{11} - \frac{32}{41} a^{10} + \frac{83}{41} a^{9} - \frac{124}{41} a^{8} + \frac{170}{41} a^{7} - \frac{163}{41} a^{6} + \frac{83}{41} a^{5} + \frac{32}{41} a^{4} + \frac{18}{41} a^{3} - \frac{4}{41} a^{2} + \frac{10}{41} a + \frac{32}{41} \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{9}{41}a^{15}-\frac{31}{41}a^{14}+\frac{45}{41}a^{13}-\frac{23}{41}a^{12}-\frac{32}{41}a^{11}+\frac{83}{41}a^{10}-\frac{124}{41}a^{9}+\frac{170}{41}a^{8}-\frac{163}{41}a^{7}+\frac{83}{41}a^{6}+\frac{32}{41}a^{5}+\frac{18}{41}a^{4}-\frac{4}{41}a^{3}+\frac{10}{41}a^{2}-\frac{9}{41}a$, $\frac{320}{779}a^{15}-\frac{967}{779}a^{14}+\frac{1566}{779}a^{13}-\frac{1850}{779}a^{12}+\frac{1825}{779}a^{11}-\frac{1779}{779}a^{10}+\frac{1130}{779}a^{9}+\frac{173}{779}a^{8}-\frac{383}{779}a^{7}-\frac{79}{779}a^{6}+\frac{1005}{779}a^{5}+\frac{2327}{779}a^{4}+\frac{1094}{779}a^{3}+\frac{2021}{779}a^{2}+\frac{384}{779}a+\frac{457}{779}$, $\frac{127}{779}a^{15}-\frac{305}{779}a^{14}+\frac{154}{779}a^{13}+\frac{365}{779}a^{12}-\frac{706}{779}a^{11}+\frac{429}{779}a^{10}-\frac{172}{779}a^{9}+\frac{19}{41}a^{8}+\frac{233}{779}a^{7}-\frac{1351}{779}a^{6}+\frac{1592}{779}a^{5}+\frac{1142}{779}a^{4}+\frac{131}{779}a^{3}-\frac{840}{779}a^{2}+\frac{868}{779}a+\frac{273}{779}$, $\frac{411}{779}a^{15}-\frac{1359}{779}a^{14}+\frac{2326}{779}a^{13}-\frac{2735}{779}a^{12}+\frac{2711}{779}a^{11}-\frac{2959}{779}a^{10}+\frac{2738}{779}a^{9}-\frac{1389}{779}a^{8}+\frac{1031}{779}a^{7}-\frac{1913}{779}a^{6}+\frac{3466}{779}a^{5}+\frac{34}{19}a^{4}+\frac{942}{779}a^{3}+\frac{2032}{779}a^{2}+\frac{803}{779}a+\frac{777}{779}$, $\frac{419}{779}a^{15}-\frac{1049}{779}a^{14}+\frac{1014}{779}a^{13}+\frac{217}{779}a^{12}-\frac{1986}{779}a^{11}+\frac{3042}{779}a^{10}-\frac{4164}{779}a^{9}+\frac{5399}{779}a^{8}-\frac{4026}{779}a^{7}+\frac{922}{779}a^{6}+\frac{2306}{779}a^{5}+\frac{2963}{779}a^{4}+\frac{1855}{779}a^{3}+\frac{2025}{779}a^{2}+\frac{2149}{779}a+\frac{1428}{779}$, $\frac{197}{779}a^{15}-\frac{381}{779}a^{14}+\frac{117}{779}a^{13}+\frac{506}{779}a^{12}-\frac{898}{779}a^{11}+\frac{775}{779}a^{10}-\frac{1028}{779}a^{9}+\frac{1593}{779}a^{8}-\frac{908}{779}a^{7}+\frac{18}{779}a^{6}-\frac{46}{779}a^{5}+\frac{3545}{779}a^{4}+\frac{339}{779}a^{3}+\frac{1223}{779}a^{2}+\frac{1108}{779}a+\frac{773}{779}$, $\frac{335}{779}a^{15}-\frac{878}{779}a^{14}+\frac{1199}{779}a^{13}-\frac{1267}{779}a^{12}+\frac{80}{41}a^{11}-\frac{2279}{779}a^{10}+\frac{2377}{779}a^{9}-\frac{1749}{779}a^{8}+\frac{2382}{779}a^{7}-\frac{2997}{779}a^{6}+\frac{3086}{779}a^{5}+\frac{2025}{779}a^{4}+\frac{2544}{779}a^{3}+\frac{1799}{779}a^{2}+\frac{1690}{779}a+\frac{904}{779}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 27.0045913409 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 27.0045913409 \cdot 1}{6\cdot\sqrt{4393378612917909}}\cr\approx \mathstrut & 0.164939999998 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 8.0.8486613.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
61.2.1.1 | $x^{2} + 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
\(104773\)
| $\Q_{104773}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{104773}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |