Normalized defining polynomial
\( x^{16} - 7 x^{15} + 22 x^{14} - 44 x^{13} + 46 x^{12} + 111 x^{11} - 561 x^{10} + 941 x^{9} - 744 x^{8} - 773 x^{7} + 4887 x^{6} - 6458 x^{5} - 1846 x^{4} + 8553 x^{3} - 1956 x^{2} - 4770 x + 2887 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(439307412190718289542077=13^{9}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{34} a^{13} + \frac{3}{17} a^{12} - \frac{3}{34} a^{11} + \frac{1}{17} a^{10} - \frac{4}{17} a^{9} + \frac{2}{17} a^{8} + \frac{2}{17} a^{7} - \frac{11}{34} a^{6} - \frac{1}{2} a^{5} - \frac{7}{34} a^{4} + \frac{2}{17} a^{3} - \frac{7}{34} a^{2} - \frac{11}{34} a - \frac{4}{17}$, $\frac{1}{34} a^{14} - \frac{5}{34} a^{12} + \frac{3}{34} a^{11} - \frac{3}{34} a^{10} + \frac{1}{34} a^{9} + \frac{7}{17} a^{8} + \frac{8}{17} a^{7} - \frac{1}{17} a^{6} - \frac{7}{34} a^{5} + \frac{6}{17} a^{4} - \frac{7}{17} a^{3} - \frac{3}{34} a^{2} + \frac{7}{34} a + \frac{7}{17}$, $\frac{1}{2027827706344313054} a^{15} + \frac{13873477198805291}{1013913853172156527} a^{14} + \frac{18751182945240713}{2027827706344313054} a^{13} - \frac{51207476782173333}{1013913853172156527} a^{12} - \frac{208579954423534307}{2027827706344313054} a^{11} + \frac{112722229121230765}{2027827706344313054} a^{10} - \frac{27004862830254209}{119283982726136062} a^{9} - \frac{358089234202327877}{2027827706344313054} a^{8} + \frac{15615690810319333}{1013913853172156527} a^{7} + \frac{146049273791220776}{1013913853172156527} a^{6} - \frac{167990191676322789}{1013913853172156527} a^{5} + \frac{646316553086511273}{2027827706344313054} a^{4} - \frac{328807588936308820}{1013913853172156527} a^{3} - \frac{12230400658496825}{24729606174930647} a^{2} + \frac{170979241475333863}{2027827706344313054} a + \frac{56203941772499212}{1013913853172156527}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30590.2605268 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.6877.1, 8.0.614810677.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |