Normalized defining polynomial
\( x^{16} + 492 x^{14} + 87822 x^{12} + 7199928 x^{10} + 282271716 x^{8} + 5280868224 x^{6} + 42978947328 x^{4} + 105408221184 x^{2} + 45174951936 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4377879877971569095410685630463959105536=2^{44}\cdot 3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $300.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1968=2^{4}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1968}(1,·)$, $\chi_{1968}(899,·)$, $\chi_{1968}(73,·)$, $\chi_{1968}(337,·)$, $\chi_{1968}(1667,·)$, $\chi_{1968}(1643,·)$, $\chi_{1968}(409,·)$, $\chi_{1968}(875,·)$, $\chi_{1968}(985,·)$, $\chi_{1968}(1859,·)$, $\chi_{1968}(1883,·)$, $\chi_{1968}(1057,·)$, $\chi_{1968}(1321,·)$, $\chi_{1968}(683,·)$, $\chi_{1968}(1393,·)$, $\chi_{1968}(659,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{54} a^{6}$, $\frac{1}{54} a^{7}$, $\frac{1}{13284} a^{8}$, $\frac{1}{26568} a^{9} - \frac{1}{36} a^{5} - \frac{1}{2} a$, $\frac{1}{3666384} a^{10} + \frac{2}{76383} a^{8} - \frac{29}{4968} a^{6} + \frac{5}{414} a^{4} - \frac{19}{276} a^{2} + \frac{10}{23}$, $\frac{1}{7332768} a^{11} + \frac{1}{76383} a^{9} + \frac{7}{1104} a^{7} - \frac{1}{46} a^{5} + \frac{73}{552} a^{3} - \frac{13}{46} a$, $\frac{1}{3519728640} a^{12} + \frac{29}{293310720} a^{10} + \frac{799}{195540480} a^{8} + \frac{67}{132480} a^{6} - \frac{5711}{264960} a^{4} + \frac{257}{1840} a^{2} - \frac{79}{920}$, $\frac{1}{7039457280} a^{13} + \frac{29}{586621440} a^{11} + \frac{799}{391080960} a^{9} - \frac{7159}{794880} a^{7} + \frac{1001}{58880} a^{5} + \frac{257}{3680} a^{3} + \frac{841}{1840} a$, $\frac{1}{10690584429588480} a^{14} + \frac{10721}{98986892866560} a^{12} - \frac{10018987}{197973785733120} a^{10} + \frac{317637047}{16497815477760} a^{8} + \frac{1758883729}{804771486720} a^{6} + \frac{74683363}{8383036320} a^{4} + \frac{183761921}{2794345440} a^{2} - \frac{2596773}{11643106}$, $\frac{1}{21381168859176960} a^{15} + \frac{10721}{197973785733120} a^{13} - \frac{10018987}{395947571466240} a^{11} + \frac{317637047}{32995630955520} a^{9} + \frac{1758883729}{1609542973440} a^{7} + \frac{74683363}{16766072640} a^{5} + \frac{183761921}{5588690880} a^{3} + \frac{9046333}{23286212} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8006728}$, which has order $128107648$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 533954.940478744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{82}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{41})\), 4.4.4410944.2, 4.4.68921.1, 8.8.19456426971136.3, 8.0.66165549026450079744.1, 8.0.66165549026450079744.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.6 | $x^{8} + 4 x^{6} + 6 x^{4} + 16 x^{3} + 24 x^{2} + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.6 | $x^{8} + 4 x^{6} + 6 x^{4} + 16 x^{3} + 24 x^{2} + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |