Normalized defining polynomial
\( x^{16} - 4 x^{15} - 36 x^{14} + 274 x^{13} - 16 x^{12} - 6092 x^{11} + 67960 x^{10} - 468046 x^{9} + 2156282 x^{8} - 6421886 x^{7} + 10535912 x^{6} - 5431518 x^{5} - 7791049 x^{4} - 1515286 x^{3} + 45995976 x^{2} - 27672790 x + 15280961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43690605516556003276152578767301401=29^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{116} a^{8} - \frac{1}{58} a^{7} - \frac{5}{29} a^{6} + \frac{5}{58} a^{5} - \frac{7}{58} a^{4} + \frac{13}{58} a^{3} + \frac{33}{116} a^{2} + \frac{2}{29} a + \frac{7}{116}$, $\frac{1}{116} a^{9} - \frac{6}{29} a^{7} + \frac{7}{29} a^{6} + \frac{3}{58} a^{5} - \frac{1}{58} a^{4} + \frac{27}{116} a^{3} + \frac{4}{29} a^{2} + \frac{23}{116} a + \frac{7}{58}$, $\frac{1}{116} a^{10} - \frac{5}{29} a^{7} - \frac{5}{58} a^{6} + \frac{3}{58} a^{5} - \frac{19}{116} a^{4} - \frac{14}{29} a^{3} + \frac{3}{116} a^{2} + \frac{8}{29} a - \frac{3}{58}$, $\frac{1}{116} a^{11} + \frac{2}{29} a^{7} + \frac{3}{29} a^{6} + \frac{7}{116} a^{5} + \frac{3}{29} a^{4} - \frac{57}{116} a^{3} - \frac{1}{29} a^{2} + \frac{19}{58} a - \frac{17}{58}$, $\frac{1}{1624} a^{12} - \frac{1}{406} a^{11} - \frac{3}{812} a^{10} - \frac{1}{232} a^{9} - \frac{1}{1624} a^{8} - \frac{59}{406} a^{7} + \frac{351}{1624} a^{6} - \frac{179}{812} a^{5} + \frac{33}{1624} a^{4} + \frac{659}{1624} a^{3} + \frac{613}{1624} a^{2} - \frac{495}{1624} a + \frac{185}{1624}$, $\frac{1}{1624} a^{13} + \frac{3}{812} a^{11} - \frac{3}{1624} a^{10} - \frac{1}{1624} a^{9} - \frac{1}{812} a^{8} + \frac{359}{1624} a^{7} + \frac{187}{812} a^{6} - \frac{111}{1624} a^{5} - \frac{51}{232} a^{4} - \frac{279}{1624} a^{3} + \frac{487}{1624} a^{2} - \frac{535}{1624} a + \frac{27}{812}$, $\frac{1}{1830248} a^{14} - \frac{177}{915124} a^{13} - \frac{5}{261464} a^{12} + \frac{2041}{1830248} a^{11} - \frac{6841}{1830248} a^{10} + \frac{1927}{1830248} a^{9} - \frac{3}{39788} a^{8} - \frac{20299}{457562} a^{7} + \frac{193139}{915124} a^{6} + \frac{377995}{1830248} a^{5} + \frac{51873}{915124} a^{4} + \frac{119263}{915124} a^{3} + \frac{79372}{228781} a^{2} + \frac{322187}{1830248} a + \frac{440213}{1830248}$, $\frac{1}{27967071136078101888825556495305631635896} a^{15} - \frac{1285777475015020786751271103039981}{13983535568039050944412778247652815817948} a^{14} - \frac{45806369200448470365248125459105433}{303989903653022846617669092340278604738} a^{13} + \frac{6479328798245215996113935559277044013}{27967071136078101888825556495305631635896} a^{12} + \frac{79027217701378357668935046312576893885}{27967071136078101888825556495305631635896} a^{11} - \frac{1294883525387314152500342030441191708}{499411984572823248014742080273314850641} a^{10} - \frac{62453150793060357536871170699546338429}{27967071136078101888825556495305631635896} a^{9} + \frac{5971785234914794173722685071277610813}{6991767784019525472206389123826407908974} a^{8} - \frac{2887563526071543757340022028448612426297}{27967071136078101888825556495305631635896} a^{7} + \frac{315640086658283474581774257749680050841}{27967071136078101888825556495305631635896} a^{6} + \frac{401397247278547326435218346634447659685}{27967071136078101888825556495305631635896} a^{5} - \frac{102564150958715524365889073313367341161}{3995295876582585984117936642186518805128} a^{4} - \frac{1914615916194432059904844506036236730411}{3995295876582585984117936642186518805128} a^{3} - \frac{1114457044509322954341985490677969513503}{3495883892009762736103194561913203954487} a^{2} + \frac{1956450426927469912328883975581755296495}{6991767784019525472206389123826407908974} a + \frac{1957546198682166435209274204317155607813}{6991767784019525472206389123826407908974}$
Class group and class number
$C_{42}$, which has order $42$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2123693498.09 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |