Normalized defining polynomial
\( x^{16} + 48 x^{14} - 80 x^{13} + 808 x^{12} - 2304 x^{11} + 8640 x^{10} - 21136 x^{9} + 57456 x^{8} - 120320 x^{7} + 257456 x^{6} - 419232 x^{5} + 588936 x^{4} - 573184 x^{3} + 526720 x^{2} - 330144 x + 210878 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4361204616626257617397743616=2^{72}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{11} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{3}{7} a^{5} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{414888448545893755584538275697518228288007} a^{15} - \frac{2506025421213494749475901541060139051366}{414888448545893755584538275697518228288007} a^{14} + \frac{105115806420773279734317477918897389215927}{414888448545893755584538275697518228288007} a^{13} - \frac{22342798657808536355148026307716598331518}{59269778363699107940648325099645461184001} a^{12} - \frac{48891450608028104083841166862503163684529}{414888448545893755584538275697518228288007} a^{11} + \frac{14337171834322556203948149577755583579537}{59269778363699107940648325099645461184001} a^{10} + \frac{141379025572808901710083273406061240503908}{414888448545893755584538275697518228288007} a^{9} - \frac{39095045333332258270973692407827414909440}{414888448545893755584538275697518228288007} a^{8} + \frac{75150107456809320376878264344466714019480}{414888448545893755584538275697518228288007} a^{7} - \frac{190800112067382480667490637313975439566547}{414888448545893755584538275697518228288007} a^{6} - \frac{144109324289707218383200225616192437705245}{414888448545893755584538275697518228288007} a^{5} + \frac{55915132587355349569504281062718960674825}{414888448545893755584538275697518228288007} a^{4} + \frac{6114615580976620497899149219139013790826}{59269778363699107940648325099645461184001} a^{3} + \frac{66241550539534756927604216455567607833191}{414888448545893755584538275697518228288007} a^{2} + \frac{63789919882848759390050534020028127519122}{414888448545893755584538275697518228288007} a - \frac{172964528146611853108183256745532896211510}{414888448545893755584538275697518228288007}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{144}$, which has order $1152$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.9498624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 31 | Data not computed | ||||||