Normalized defining polynomial
\( x^{16} + 48 x^{14} - 48 x^{13} + 880 x^{12} - 1504 x^{11} + 9104 x^{10} - 18864 x^{9} + 63084 x^{8} - 138624 x^{7} + 292784 x^{6} - 507040 x^{5} + 958208 x^{4} - 1261120 x^{3} + 1259280 x^{2} - 608640 x + 222722 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4361204616626257617397743616=2^{72}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1386867697955066625189934034253611288526185761} a^{15} + \frac{365232727850996169844545486222810846943347801}{1386867697955066625189934034253611288526185761} a^{14} + \frac{632435817759989358428662185020801601436528027}{1386867697955066625189934034253611288526185761} a^{13} - \frac{540995563710980117460067309153244472611973985}{1386867697955066625189934034253611288526185761} a^{12} + \frac{206808272565642129762090605566480730647271578}{1386867697955066625189934034253611288526185761} a^{11} + \frac{560815999052644949747867479045731635347374147}{1386867697955066625189934034253611288526185761} a^{10} + \frac{517202035508853589429695311529916784669099792}{1386867697955066625189934034253611288526185761} a^{9} + \frac{221169347728993048810170628676418416219161648}{1386867697955066625189934034253611288526185761} a^{8} + \frac{652409903431295787266138793728887273293301172}{1386867697955066625189934034253611288526185761} a^{7} + \frac{460630630060573771950613278240789523299345649}{1386867697955066625189934034253611288526185761} a^{6} + \frac{533953706278791770945276314963443965546419752}{1386867697955066625189934034253611288526185761} a^{5} - \frac{327988581788920428211399784690200321477635120}{1386867697955066625189934034253611288526185761} a^{4} - \frac{210979742679525443665761014125288595676566384}{1386867697955066625189934034253611288526185761} a^{3} - \frac{155110521350601732550336640778138037143274779}{1386867697955066625189934034253611288526185761} a^{2} - \frac{81824652789492775091610013600896459488098349}{1386867697955066625189934034253611288526185761} a - \frac{14707629943962194004797405769920378501575181}{1386867697955066625189934034253611288526185761}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{148}$, which has order $1184$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.9498624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 31 | Data not computed | ||||||