Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 24 x^{13} + 3 x^{12} + 54 x^{11} + 10 x^{10} - 90 x^{9} + 291 x^{8} + 90 x^{7} + 10 x^{6} - 54 x^{5} + 3 x^{4} + 24 x^{3} + 18 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(435984840062500000000=2^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a$, $\frac{1}{270} a^{12} - \frac{11}{90} a^{11} - \frac{2}{27} a^{10} + \frac{2}{9} a^{9} - \frac{43}{90} a^{8} + \frac{4}{9} a^{7} - \frac{1}{30} a^{6} - \frac{4}{9} a^{5} - \frac{43}{90} a^{4} - \frac{2}{9} a^{3} - \frac{2}{27} a^{2} - \frac{19}{90} a + \frac{1}{270}$, $\frac{1}{270} a^{13} - \frac{29}{270} a^{11} + \frac{1}{9} a^{10} - \frac{13}{90} a^{9} - \frac{29}{90} a^{8} - \frac{11}{30} a^{7} + \frac{41}{90} a^{6} - \frac{13}{90} a^{5} + \frac{1}{90} a^{4} - \frac{11}{27} a^{3} + \frac{31}{90} a^{2} + \frac{1}{27} a + \frac{41}{90}$, $\frac{1}{8910} a^{14} + \frac{1}{990} a^{13} + \frac{1}{810} a^{12} + \frac{83}{2970} a^{11} - \frac{299}{8910} a^{10} + \frac{94}{495} a^{9} - \frac{22}{135} a^{8} - \frac{76}{495} a^{7} + \frac{23}{135} a^{6} - \frac{181}{495} a^{5} - \frac{383}{8910} a^{4} - \frac{1369}{2970} a^{3} + \frac{397}{810} a^{2} + \frac{1081}{2970} a - \frac{1013}{8910}$, $\frac{1}{44550} a^{15} + \frac{1}{44550} a^{14} + \frac{1}{8910} a^{13} - \frac{2}{22275} a^{12} - \frac{94}{891} a^{11} + \frac{227}{22275} a^{10} - \frac{122}{7425} a^{9} - \frac{313}{14850} a^{8} + \frac{658}{7425} a^{7} - \frac{1933}{14850} a^{6} - \frac{10553}{44550} a^{5} - \frac{304}{891} a^{4} - \frac{13597}{44550} a^{3} + \frac{2677}{8910} a^{2} + \frac{10859}{22275} a + \frac{16057}{44550}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{763}{810} a^{15} - \frac{9292}{1485} a^{14} + \frac{183829}{8910} a^{13} - \frac{1514}{45} a^{12} + \frac{154379}{8910} a^{11} + \frac{150589}{2970} a^{10} - \frac{81929}{2970} a^{9} - \frac{1549}{18} a^{8} + \frac{996301}{2970} a^{7} - \frac{593}{6} a^{6} - \frac{38563}{891} a^{5} - \frac{27301}{2970} a^{4} + \frac{100757}{4455} a^{3} + \frac{3929}{270} a^{2} + \frac{1357}{4455} a - \frac{487}{1485} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26185.7676977 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $A_4:C_4$ |
| Character table for $A_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.144500.1, \(\Q(\zeta_{5})\), 8.0.20880250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.12.8.1 | $x^{12} - 51 x^{9} + 867 x^{6} - 4913 x^{3} + 111166451$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |