Properties

Label 16.0.43571104679...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 229\cdot 541$
Root discriminant $16.88$
Ramified primes $3, 5, 7, 229, 541$
Class number $1$
Class group Trivial
Galois group 16T1775

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -6, 12, -12, 9, -9, 6, 0, 19, -53, 70, -74, 73, -56, 28, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 28*x^14 - 56*x^13 + 73*x^12 - 74*x^11 + 70*x^10 - 53*x^9 + 19*x^8 + 6*x^6 - 9*x^5 + 9*x^4 - 12*x^3 + 12*x^2 - 6*x + 3)
 
gp: K = bnfinit(x^16 - 8*x^15 + 28*x^14 - 56*x^13 + 73*x^12 - 74*x^11 + 70*x^10 - 53*x^9 + 19*x^8 + 6*x^6 - 9*x^5 + 9*x^4 - 12*x^3 + 12*x^2 - 6*x + 3, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 73 x^{12} - 74 x^{11} + 70 x^{10} - 53 x^{9} + 19 x^{8} + 6 x^{6} - 9 x^{5} + 9 x^{4} - 12 x^{3} + 12 x^{2} - 6 x + 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(43571104679085755625=3^{14}\cdot 5^{4}\cdot 7^{6}\cdot 229\cdot 541\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7, 229, 541$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{277} a^{14} - \frac{7}{277} a^{13} - \frac{45}{277} a^{12} + \frac{84}{277} a^{11} + \frac{80}{277} a^{10} + \frac{2}{277} a^{9} + \frac{55}{277} a^{8} - \frac{130}{277} a^{7} + \frac{137}{277} a^{6} + \frac{130}{277} a^{5} - \frac{42}{277} a^{4} - \frac{44}{277} a^{3} - \frac{33}{277} a^{2} + \frac{89}{277} a + \frac{63}{277}$, $\frac{1}{277} a^{15} - \frac{94}{277} a^{13} + \frac{46}{277} a^{12} + \frac{114}{277} a^{11} + \frac{8}{277} a^{10} + \frac{69}{277} a^{9} - \frac{22}{277} a^{8} + \frac{58}{277} a^{7} - \frac{19}{277} a^{6} + \frac{37}{277} a^{5} - \frac{61}{277} a^{4} - \frac{64}{277} a^{3} + \frac{135}{277} a^{2} + \frac{132}{277} a - \frac{113}{277}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{47}{277} a^{14} + \frac{329}{277} a^{13} - \frac{932}{277} a^{12} + \frac{1315}{277} a^{11} - \frac{990}{277} a^{10} + \frac{737}{277} a^{9} - \frac{923}{277} a^{8} + \frac{293}{277} a^{7} + \frac{486}{277} a^{6} + \frac{261}{277} a^{5} - \frac{796}{277} a^{4} + \frac{129}{277} a^{3} - \frac{111}{277} a^{2} + \frac{249}{277} a + \frac{86}{277} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8443.36920117 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1775:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 136 conjugacy class representatives for t16n1775 are not computed
Character table for t16n1775 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.189.1, 8.0.18753525.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R R $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.7.1$x^{8} + 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
3.8.7.1$x^{8} + 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
$5$5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.8.6.2$x^{8} - 49 x^{4} + 3969$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
229Data not computed
541Data not computed