Normalized defining polynomial
\( x^{16} - 147 x^{14} + 8533 x^{12} - 242414 x^{10} + 3505530 x^{8} - 23532134 x^{6} + 48780893 x^{4} + 41074633 x^{2} + 283282561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4353899607317398687744140625=5^{14}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{3}{16} a - \frac{1}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a + \frac{3}{16}$, $\frac{1}{64} a^{12} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} + \frac{1}{16} a^{2} + \frac{5}{16} a + \frac{1}{64}$, $\frac{1}{64} a^{13} - \frac{1}{16} a^{8} + \frac{1}{32} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{19}{64} a - \frac{5}{16}$, $\frac{1}{6245808229593237454080128} a^{14} - \frac{1}{128} a^{13} + \frac{31732129494206306927351}{6245808229593237454080128} a^{12} - \frac{1}{32} a^{11} - \frac{7875093420244610530239}{390363014349577340880008} a^{10} - \frac{1}{32} a^{9} - \frac{117945912242894091913917}{3122904114796618727040064} a^{8} + \frac{3}{64} a^{7} - \frac{77460688593705156126987}{3122904114796618727040064} a^{6} + \frac{1}{32} a^{5} - \frac{6055468891525969999755}{48795376793697167610001} a^{4} - \frac{3}{32} a^{3} + \frac{1889134540226961203169161}{6245808229593237454080128} a^{2} + \frac{27}{128} a - \frac{363963020660540726175681}{6245808229593237454080128}$, $\frac{1}{105123198312283779589622634368} a^{15} - \frac{75427586584769833190744377}{13140399789035472448702829296} a^{13} - \frac{1}{128} a^{12} + \frac{205933785072514766039693265}{26280799578070944897405658592} a^{11} - \frac{1}{32} a^{10} - \frac{2116958981976413419348977299}{52561599156141889794811317184} a^{9} - \frac{1}{32} a^{8} - \frac{436342591945140076762887435}{26280799578070944897405658592} a^{7} - \frac{5}{64} a^{6} - \frac{267055690689258640699087629}{26280799578070944897405658592} a^{5} + \frac{1}{32} a^{4} - \frac{19107356325407457818225422459}{105123198312283779589622634368} a^{3} + \frac{13}{32} a^{2} + \frac{3887595263373267724101968253}{26280799578070944897405658592} a + \frac{43}{128}$
Class group and class number
$C_{2}\times C_{10}\times C_{10}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2366466318975711877}{129621699521928211577833088} a^{15} + \frac{10433131}{32197425071276944} a^{14} - \frac{165287015537137563035}{64810849760964105788916544} a^{13} + \frac{1029554417}{257579400570215552} a^{12} + \frac{4447264343464154255441}{32405424880482052894458272} a^{11} - \frac{253209079887}{64394850142553888} a^{10} - \frac{222813125146135379144047}{64810849760964105788916544} a^{9} + \frac{15520150859219}{64394850142553888} a^{8} + \frac{645214003735840854990551}{16202712440241026447229136} a^{7} - \frac{673750334499783}{128789700285107776} a^{6} - \frac{5365048585397481453149277}{32405424880482052894458272} a^{5} + \frac{2326223540962391}{64394850142553888} a^{4} - \frac{244284142220286739849095}{129621699521928211577833088} a^{3} + \frac{3546866266408939}{64394850142553888} a^{2} + \frac{838473051773102906189583}{64810849760964105788916544} a - \frac{40819238146423459}{257579400570215552} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 503142.791513 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.7625.1, \(\Q(\zeta_{5})\), 4.0.1525.1, 8.8.65984086015625.1, 8.0.65984086015625.1, 8.0.58140625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |