Properties

Label 16.0.43538996073...0625.3
Degree $16$
Signature $[0, 8]$
Discriminant $5^{14}\cdot 61^{10}$
Root discriminant $53.39$
Ramified primes $5, 61$
Class number $400$ (GRH)
Class group $[10, 40]$ (GRH)
Galois group $(C_2\times C_4).D_4$ (as 16T121)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![140891, -23064, 165308, -24728, 72006, -23674, 17625, -2004, -736, 862, 145, -262, 96, 24, -8, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 8*x^14 + 24*x^13 + 96*x^12 - 262*x^11 + 145*x^10 + 862*x^9 - 736*x^8 - 2004*x^7 + 17625*x^6 - 23674*x^5 + 72006*x^4 - 24728*x^3 + 165308*x^2 - 23064*x + 140891)
 
gp: K = bnfinit(x^16 - 2*x^15 - 8*x^14 + 24*x^13 + 96*x^12 - 262*x^11 + 145*x^10 + 862*x^9 - 736*x^8 - 2004*x^7 + 17625*x^6 - 23674*x^5 + 72006*x^4 - 24728*x^3 + 165308*x^2 - 23064*x + 140891, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 8 x^{14} + 24 x^{13} + 96 x^{12} - 262 x^{11} + 145 x^{10} + 862 x^{9} - 736 x^{8} - 2004 x^{7} + 17625 x^{6} - 23674 x^{5} + 72006 x^{4} - 24728 x^{3} + 165308 x^{2} - 23064 x + 140891 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4353899607317398687744140625=5^{14}\cdot 61^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{3421610372585895191831109081667240408} a^{15} - \frac{405528081500027320153481761818881867}{3421610372585895191831109081667240408} a^{14} - \frac{72445095706566305468521805150069641}{3421610372585895191831109081667240408} a^{13} - \frac{276766821002776888152611841105468579}{3421610372585895191831109081667240408} a^{12} - \frac{751460167350742445446830668431006545}{3421610372585895191831109081667240408} a^{11} - \frac{227898187311589072453400661366618641}{3421610372585895191831109081667240408} a^{10} - \frac{100547013653681217765472492589430929}{1710805186292947595915554540833620204} a^{9} - \frac{64616135204934496674646552274688351}{855402593146473797957777270416810102} a^{8} + \frac{79983525353499821851556029299902681}{855402593146473797957777270416810102} a^{7} + \frac{23640194370685702952621258263028641}{855402593146473797957777270416810102} a^{6} - \frac{982540947863871219525864939356939539}{3421610372585895191831109081667240408} a^{5} - \frac{1619671617090293062020440739933425455}{3421610372585895191831109081667240408} a^{4} - \frac{976630090455213785159308375093386251}{3421610372585895191831109081667240408} a^{3} - \frac{1676522688631008941521254581887761777}{3421610372585895191831109081667240408} a^{2} - \frac{1667624997556370551255173228315202459}{3421610372585895191831109081667240408} a + \frac{307248380832307004319385467929818343}{3421610372585895191831109081667240408}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{10}\times C_{40}$, which has order $400$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 39830.833099 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2\times C_4).D_4$ (as 16T121):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $(C_2\times C_4).D_4$
Character table for $(C_2\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.7625.1, 4.0.465125.1, 4.0.1525.1, 8.0.65984086015625.1, 8.8.17732890625.1, 8.0.216341265625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$61$61.8.6.2$x^{8} + 183 x^{4} + 14884$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
61.8.4.1$x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$