Properties

Label 16.0.43381651460...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 5^{12}\cdot 11^{4}\cdot 41^{4}$
Root discriminant $61.64$
Ramified primes $2, 5, 11, 41$
Class number $8$ (GRH)
Class group $[2, 2, 2]$ (GRH)
Galois group $C_2^4.C_2^3$ (as 16T203)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![60133751, -3534252, 101881698, -13773424, 47701212, -5250312, 10143918, -853752, 1203805, -69432, 84906, -2744, 3622, -44, 88, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 88*x^14 - 44*x^13 + 3622*x^12 - 2744*x^11 + 84906*x^10 - 69432*x^9 + 1203805*x^8 - 853752*x^7 + 10143918*x^6 - 5250312*x^5 + 47701212*x^4 - 13773424*x^3 + 101881698*x^2 - 3534252*x + 60133751)
 
gp: K = bnfinit(x^16 + 88*x^14 - 44*x^13 + 3622*x^12 - 2744*x^11 + 84906*x^10 - 69432*x^9 + 1203805*x^8 - 853752*x^7 + 10143918*x^6 - 5250312*x^5 + 47701212*x^4 - 13773424*x^3 + 101881698*x^2 - 3534252*x + 60133751, 1)
 

Normalized defining polynomial

\( x^{16} + 88 x^{14} - 44 x^{13} + 3622 x^{12} - 2744 x^{11} + 84906 x^{10} - 69432 x^{9} + 1203805 x^{8} - 853752 x^{7} + 10143918 x^{6} - 5250312 x^{5} + 47701212 x^{4} - 13773424 x^{3} + 101881698 x^{2} - 3534252 x + 60133751 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(43381651460325376000000000000=2^{32}\cdot 5^{12}\cdot 11^{4}\cdot 41^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2711858544813982218888248098469698636592098131757069102} a^{15} + \frac{54961270859394965681824497540447812352305219609427062}{1355929272406991109444124049234849318296049065878534551} a^{14} - \frac{122411851087082420296126902033486115417814103350035356}{1355929272406991109444124049234849318296049065878534551} a^{13} + \frac{38861907981509289702023416500522658887319572915691104}{1355929272406991109444124049234849318296049065878534551} a^{12} - \frac{50394223004048973624040627254946217502095675369881417}{1355929272406991109444124049234849318296049065878534551} a^{11} + \frac{575449277007829022453676906335737540954650266587789317}{2711858544813982218888248098469698636592098131757069102} a^{10} + \frac{37089229196466018957849618170688562317723110419066441}{1355929272406991109444124049234849318296049065878534551} a^{9} + \frac{583240617005786148651828935436630301400791210378863381}{2711858544813982218888248098469698636592098131757069102} a^{8} + \frac{633746963699317864685674427010543276525048054384882818}{1355929272406991109444124049234849318296049065878534551} a^{7} + \frac{178675869212221242999155936461693885543720478798672015}{2711858544813982218888248098469698636592098131757069102} a^{6} + \frac{226295693136078972456377551061430696107938305919515572}{1355929272406991109444124049234849318296049065878534551} a^{5} + \frac{777757266056283583907690194069198783154512973255749475}{2711858544813982218888248098469698636592098131757069102} a^{4} + \frac{58712769199433493988508085293347407742213254888190291}{2711858544813982218888248098469698636592098131757069102} a^{3} + \frac{209593016471336033466035644551123862523614518440660185}{2711858544813982218888248098469698636592098131757069102} a^{2} - \frac{490953785353082510664397243723771880255494902795619882}{1355929272406991109444124049234849318296049065878534551} a - \frac{426919736290465320353221752800001975266547313793754489}{2711858544813982218888248098469698636592098131757069102}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{653696523608921840925218029830740612558834}{14575026307435060457741226572162497643753684963921} a^{15} + \frac{546083227580788435099919731710740601703906}{14575026307435060457741226572162497643753684963921} a^{14} - \frac{53914665619163155510026259083786681442723367}{14575026307435060457741226572162497643753684963921} a^{13} + \frac{71107911941524493769474261885100687344229297}{14575026307435060457741226572162497643753684963921} a^{12} - \frac{2102619057401436514928447099177732525930165486}{14575026307435060457741226572162497643753684963921} a^{11} + \frac{6302950754977708124397532462717149981311393413}{29150052614870120915482453144324995287507369927842} a^{10} - \frac{46034298902295288364011184823417864463081553736}{14575026307435060457741226572162497643753684963921} a^{9} + \frac{131855844065125519056499910355322174565503728543}{29150052614870120915482453144324995287507369927842} a^{8} - \frac{593329785118755923078556431931805174448824473710}{14575026307435060457741226572162497643753684963921} a^{7} + \frac{1377907355775121094103262154360977108364782823527}{29150052614870120915482453144324995287507369927842} a^{6} - \frac{4286476929227463481709251967395995095480030572992}{14575026307435060457741226572162497643753684963921} a^{5} + \frac{7026029145442012716063692620162268084090494424053}{29150052614870120915482453144324995287507369927842} a^{4} - \frac{15912078225144269198937759236189244754218628920818}{14575026307435060457741226572162497643753684963921} a^{3} + \frac{17318191347645791053928151701659048103441337400153}{29150052614870120915482453144324995287507369927842} a^{2} - \frac{19595729540807421806292512304834484377202682986537}{14575026307435060457741226572162497643753684963921} a + \frac{35340718765025632827590435716515988028541046253155}{29150052614870120915482453144324995287507369927842} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28150374.3329 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T203):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 41 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.2.2$x^{4} - 11 x^{2} + 847$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
11.4.2.2$x^{4} - 11 x^{2} + 847$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
41Data not computed