Properties

Label 16.0.43257684960...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{10}\cdot 29^{8}\cdot 941^{2}$
Root discriminant $34.65$
Ramified primes $5, 29, 941$
Class number $64$ (GRH)
Class group $[4, 16]$ (GRH)
Galois group 16T984

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9931, -31727, 62264, -83483, 87219, -72357, 50113, -28957, 14470, -6194, 2375, -795, 257, -73, 21, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 21*x^14 - 73*x^13 + 257*x^12 - 795*x^11 + 2375*x^10 - 6194*x^9 + 14470*x^8 - 28957*x^7 + 50113*x^6 - 72357*x^5 + 87219*x^4 - 83483*x^3 + 62264*x^2 - 31727*x + 9931)
 
gp: K = bnfinit(x^16 - 4*x^15 + 21*x^14 - 73*x^13 + 257*x^12 - 795*x^11 + 2375*x^10 - 6194*x^9 + 14470*x^8 - 28957*x^7 + 50113*x^6 - 72357*x^5 + 87219*x^4 - 83483*x^3 + 62264*x^2 - 31727*x + 9931, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 21 x^{14} - 73 x^{13} + 257 x^{12} - 795 x^{11} + 2375 x^{10} - 6194 x^{9} + 14470 x^{8} - 28957 x^{7} + 50113 x^{6} - 72357 x^{5} + 87219 x^{4} - 83483 x^{3} + 62264 x^{2} - 31727 x + 9931 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4325768496046086337890625=5^{10}\cdot 29^{8}\cdot 941^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 941$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{3}{11} a^{13} - \frac{5}{11} a^{12} + \frac{4}{11} a^{11} + \frac{3}{11} a^{10} - \frac{5}{11} a^{9} - \frac{1}{11} a^{8} - \frac{4}{11} a^{7} + \frac{2}{11} a^{6} - \frac{1}{11} a^{5} - \frac{5}{11} a^{4} + \frac{2}{11} a^{3} - \frac{4}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{382536014672017206261107} a^{15} + \frac{11467823622682623268582}{382536014672017206261107} a^{14} + \frac{156866639470934106294172}{382536014672017206261107} a^{13} - \frac{85351822287446488987533}{382536014672017206261107} a^{12} - \frac{142190943166381348813171}{382536014672017206261107} a^{11} - \frac{23122043935604938672900}{382536014672017206261107} a^{10} + \frac{46861567603914916887193}{382536014672017206261107} a^{9} + \frac{31575316741995245916846}{382536014672017206261107} a^{8} - \frac{16544054095419492813946}{54648002096002458037301} a^{7} - \frac{106686826763306892310570}{382536014672017206261107} a^{6} - \frac{767556526596641340809}{12339871441032813105197} a^{5} - \frac{30665152357223846290095}{382536014672017206261107} a^{4} - \frac{9871437387177774258127}{382536014672017206261107} a^{3} - \frac{107239329866332023133871}{382536014672017206261107} a^{2} - \frac{186602167820743235828104}{382536014672017206261107} a - \frac{13620007780494530481294}{382536014672017206261107}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{16}$, which has order $64$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3793.72993285 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T984:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 38 conjugacy class representatives for t16n984
Character table for t16n984 is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
941Data not computed