Normalized defining polynomial
\( x^{16} - x^{15} - 7 x^{14} - 8 x^{13} + 55 x^{12} + 18 x^{11} - 100 x^{10} + 13 x^{9} + 148 x^{8} - 55 x^{7} + 878 x^{6} + 18 x^{5} - 227 x^{4} + 14 x^{3} + 659 x^{2} - 47 x + 2209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43190748110316471478641=3^{8}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{2772} a^{12} - \frac{4}{99} a^{11} - \frac{1}{84} a^{10} - \frac{13}{231} a^{9} - \frac{1}{42} a^{8} + \frac{1279}{2772} a^{7} - \frac{293}{1386} a^{6} - \frac{67}{396} a^{5} + \frac{37}{77} a^{4} - \frac{104}{231} a^{3} - \frac{145}{308} a^{2} + \frac{199}{693} a - \frac{41}{2772}$, $\frac{1}{2772} a^{13} - \frac{103}{2772} a^{11} + \frac{17}{154} a^{10} + \frac{1}{154} a^{9} + \frac{355}{2772} a^{8} + \frac{61}{462} a^{7} - \frac{5}{396} a^{6} + \frac{505}{1386} a^{5} - \frac{23}{77} a^{4} + \frac{97}{924} a^{3} - \frac{305}{693} a^{2} - \frac{89}{252} a - \frac{97}{198}$, $\frac{1}{5544} a^{14} - \frac{1}{5544} a^{13} + \frac{47}{616} a^{11} + \frac{157}{1848} a^{10} - \frac{23}{5544} a^{9} - \frac{29}{504} a^{8} - \frac{215}{693} a^{7} + \frac{95}{1848} a^{6} + \frac{229}{616} a^{5} + \frac{829}{1848} a^{4} - \frac{2543}{5544} a^{3} - \frac{97}{2772} a^{2} - \frac{11}{56} a + \frac{431}{1848}$, $\frac{1}{198423293379696} a^{15} + \frac{945088729}{33070548896616} a^{14} - \frac{366998489}{6012827072112} a^{13} - \frac{5900081161}{66141097793232} a^{12} - \frac{1677178163327}{99211646689848} a^{11} - \frac{3181670618681}{49605823344924} a^{10} - \frac{486898131519}{5511758149436} a^{9} + \frac{29890651617389}{198423293379696} a^{8} - \frac{608562921667}{1562388136848} a^{7} - \frac{23863263547789}{99211646689848} a^{6} + \frac{1023879899845}{4509620304084} a^{5} + \frac{6745706612585}{99211646689848} a^{4} - \frac{74409977494009}{198423293379696} a^{3} + \frac{8554976399669}{28346184768528} a^{2} + \frac{6952186424377}{24802911672462} a - \frac{1826156856421}{4221772199568}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{84994734}{125267230669} a^{15} + \frac{4364917079}{1503206768028} a^{14} + \frac{5266079047}{1503206768028} a^{13} - \frac{3340783099}{250534461338} a^{12} - \frac{13089381145}{214743824004} a^{11} + \frac{184944261269}{1503206768028} a^{10} + \frac{278833468055}{1503206768028} a^{9} - \frac{548120220259}{1503206768028} a^{8} - \frac{1860715111}{5918136882} a^{7} + \frac{1285836750883}{1503206768028} a^{6} - \frac{46465392751}{214743824004} a^{5} + \frac{1008835412765}{1503206768028} a^{4} + \frac{724538043905}{1503206768028} a^{3} - \frac{87694528379}{125267230669} a^{2} - \frac{516150453069}{501068922676} a + \frac{108843520025}{31983122724} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96123.0350705 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |