Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 20 x^{13} + 53 x^{12} - 41 x^{11} + 28 x^{10} - 213 x^{9} + 372 x^{8} - 207 x^{7} + 567 x^{6} - 3132 x^{5} + 7560 x^{4} - 8424 x^{3} + 6399 x^{2} - 2673 x + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43190748110316471478641=3^{8}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{4}{27} a^{7} - \frac{2}{27} a^{6} + \frac{7}{27} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{11} - \frac{1}{81} a^{10} - \frac{2}{81} a^{9} - \frac{1}{81} a^{8} + \frac{4}{81} a^{7} + \frac{10}{81} a^{6} + \frac{2}{9} a^{5} - \frac{7}{27} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{891} a^{13} + \frac{2}{891} a^{12} - \frac{1}{297} a^{11} - \frac{14}{297} a^{10} - \frac{1}{33} a^{8} - \frac{136}{891} a^{7} + \frac{34}{891} a^{6} + \frac{127}{297} a^{5} - \frac{67}{297} a^{4} + \frac{46}{99} a^{3} - \frac{47}{99} a^{2} - \frac{7}{33} a - \frac{4}{11}$, $\frac{1}{8019} a^{14} + \frac{1}{8019} a^{13} - \frac{16}{8019} a^{12} - \frac{116}{8019} a^{11} - \frac{310}{8019} a^{10} + \frac{358}{8019} a^{9} + \frac{133}{8019} a^{8} - \frac{167}{2673} a^{7} - \frac{124}{891} a^{6} - \frac{112}{297} a^{5} - \frac{20}{297} a^{4} - \frac{119}{297} a^{3} - \frac{116}{297} a^{2} + \frac{46}{99} a + \frac{16}{33}$, $\frac{1}{2393883097353} a^{15} - \frac{132326522}{2393883097353} a^{14} - \frac{70000576}{2393883097353} a^{13} + \frac{13779339643}{2393883097353} a^{12} + \frac{10505514155}{2393883097353} a^{11} + \frac{125226233656}{2393883097353} a^{10} - \frac{64411298219}{2393883097353} a^{9} - \frac{21865751078}{797961032451} a^{8} + \frac{14402810557}{265987010817} a^{7} - \frac{2149141903}{265987010817} a^{6} + \frac{11679943972}{29554112313} a^{5} - \frac{34372279687}{88662336939} a^{4} - \frac{10146133121}{88662336939} a^{3} + \frac{1471132331}{9851370771} a^{2} - \frac{829484965}{9851370771} a + \frac{1519062755}{3283790257}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2267550436}{2393883097353} a^{15} - \frac{3100020956}{2393883097353} a^{14} + \frac{3253334549}{2393883097353} a^{13} - \frac{43870361789}{2393883097353} a^{12} + \frac{93470719823}{2393883097353} a^{11} - \frac{46341863384}{2393883097353} a^{10} + \frac{58490196379}{2393883097353} a^{9} - \frac{16621681918}{88662336939} a^{8} + \frac{5937568051}{24180637347} a^{7} - \frac{8680232483}{88662336939} a^{6} + \frac{46278696608}{88662336939} a^{5} - \frac{237812380427}{88662336939} a^{4} + \frac{498827983156}{88662336939} a^{3} - \frac{51925391549}{9851370771} a^{2} + \frac{42512515292}{9851370771} a - \frac{2494693813}{3283790257} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1003936.94223 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{37})\), 4.2.4107.1 x2, 4.0.333.1 x2, 8.0.151807041.1, 8.2.69274613043.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $37$ | 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |