Properties

Label 16.0.43190748110...8641.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 37^{12}$
Root discriminant $25.98$
Ramified primes $3, 37$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^4.D_4$ (as 16T330)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, 27, -126, -45, 9, 99, 673, -967, 453, -281, 269, -90, 26, -23, 6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 6*x^14 - 23*x^13 + 26*x^12 - 90*x^11 + 269*x^10 - 281*x^9 + 453*x^8 - 967*x^7 + 673*x^6 + 99*x^5 + 9*x^4 - 45*x^3 - 126*x^2 + 27*x + 81)
 
gp: K = bnfinit(x^16 - x^15 + 6*x^14 - 23*x^13 + 26*x^12 - 90*x^11 + 269*x^10 - 281*x^9 + 453*x^8 - 967*x^7 + 673*x^6 + 99*x^5 + 9*x^4 - 45*x^3 - 126*x^2 + 27*x + 81, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 6 x^{14} - 23 x^{13} + 26 x^{12} - 90 x^{11} + 269 x^{10} - 281 x^{9} + 453 x^{8} - 967 x^{7} + 673 x^{6} + 99 x^{5} + 9 x^{4} - 45 x^{3} - 126 x^{2} + 27 x + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(43190748110316471478641=3^{8}\cdot 37^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{4}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} - \frac{1}{27} a^{12} + \frac{2}{27} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{27} a^{8} - \frac{7}{27} a^{7} - \frac{11}{27} a^{6} + \frac{10}{27} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{204205829630705397} a^{15} - \frac{1135308709064557}{204205829630705397} a^{14} - \frac{861355025972476}{22689536625633933} a^{13} + \frac{7918768744136926}{204205829630705397} a^{12} - \frac{26768469814294279}{204205829630705397} a^{11} + \frac{5016256526741015}{68068609876901799} a^{10} + \frac{4253394542355584}{204205829630705397} a^{9} + \frac{4034969165994721}{204205829630705397} a^{8} - \frac{7091287299478684}{22689536625633933} a^{7} - \frac{10053494219939011}{204205829630705397} a^{6} - \frac{75032681061489587}{204205829630705397} a^{5} + \frac{8097407540766535}{68068609876901799} a^{4} - \frac{7235145832744168}{22689536625633933} a^{3} + \frac{2924933263940092}{22689536625633933} a^{2} - \frac{5179856356979618}{22689536625633933} a - \frac{1656377032110286}{7563178875211311}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 233031.138299 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.D_4$ (as 16T330):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 23 conjugacy class representatives for $C_2^4.D_4$
Character table for $C_2^4.D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{37}) \), 4.2.4107.1, 8.2.69274613043.1, 8.0.5616860517.1, 8.2.1872286839.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
37Data not computed