Normalized defining polynomial
\( x^{16} - 2 x^{15} + 5 x^{14} + 2 x^{13} + 6 x^{12} - 20 x^{11} - 7 x^{10} + 31 x^{8} - 7 x^{6} - 20 x^{5} + 6 x^{4} + 2 x^{3} + 5 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42998169600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{4}{9} a^{9} - \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{3} a^{9} - \frac{4}{9} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{189} a^{14} + \frac{5}{189} a^{13} - \frac{1}{63} a^{12} + \frac{2}{21} a^{11} + \frac{1}{21} a^{10} - \frac{38}{189} a^{9} - \frac{31}{63} a^{8} - \frac{88}{189} a^{7} - \frac{17}{63} a^{6} + \frac{25}{189} a^{5} + \frac{31}{63} a^{4} - \frac{1}{63} a^{3} + \frac{3}{7} a^{2} - \frac{58}{189} a - \frac{41}{189}$, $\frac{1}{189} a^{15} - \frac{1}{27} a^{13} - \frac{1}{21} a^{12} + \frac{8}{63} a^{11} + \frac{1}{189} a^{10} - \frac{50}{189} a^{9} - \frac{22}{189} a^{8} + \frac{32}{189} a^{7} - \frac{2}{27} a^{6} + \frac{10}{189} a^{5} - \frac{16}{63} a^{4} - \frac{8}{21} a^{3} - \frac{43}{189} a^{2} + \frac{3}{7} a - \frac{89}{189}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2}{9} a^{15} + \frac{50}{63} a^{14} - \frac{128}{63} a^{13} + \frac{88}{63} a^{12} - \frac{52}{63} a^{11} + \frac{233}{63} a^{10} - \frac{388}{63} a^{9} - \frac{2}{63} a^{8} + \frac{52}{63} a^{7} + \frac{530}{63} a^{6} - \frac{262}{63} a^{5} - \frac{250}{63} a^{4} - \frac{164}{63} a^{3} + \frac{214}{63} a^{2} + \frac{68}{63} a + \frac{22}{63} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95.9988129964 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |