Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 72 x^{13} + 62 x^{12} + 96 x^{11} - 256 x^{10} - 544 x^{9} + 4135 x^{8} - 11144 x^{7} + 18992 x^{6} - 21536 x^{5} + 16530 x^{4} - 7272 x^{3} + 3976 x^{2} - 1920 x + 367 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42917363397401430196224=2^{52}\cdot 3^{4}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{697} a^{14} + \frac{52}{697} a^{13} + \frac{270}{697} a^{12} + \frac{88}{697} a^{11} + \frac{175}{697} a^{10} + \frac{233}{697} a^{9} + \frac{62}{697} a^{8} + \frac{93}{697} a^{7} - \frac{295}{697} a^{6} + \frac{52}{697} a^{5} - \frac{342}{697} a^{4} - \frac{245}{697} a^{3} - \frac{175}{697} a^{2} - \frac{318}{697} a - \frac{48}{697}$, $\frac{1}{15474622355902044612636791} a^{15} - \frac{281000022780057279747}{910271903288355565449223} a^{14} + \frac{5157011984414561653342399}{15474622355902044612636791} a^{13} - \frac{2250753464307317600200765}{15474622355902044612636791} a^{12} + \frac{417344757355882695716456}{15474622355902044612636791} a^{11} + \frac{3396732782873252084947038}{15474622355902044612636791} a^{10} - \frac{4155478962331117513879493}{15474622355902044612636791} a^{9} + \frac{4028132457796542442356035}{15474622355902044612636791} a^{8} + \frac{3947251642832374244647973}{15474622355902044612636791} a^{7} + \frac{4175700165895007176157629}{15474622355902044612636791} a^{6} - \frac{7218907354960222697067710}{15474622355902044612636791} a^{5} - \frac{2079599738879470385934193}{15474622355902044612636791} a^{4} - \frac{6108366908002122114348162}{15474622355902044612636791} a^{3} - \frac{2941204699349040007191419}{15474622355902044612636791} a^{2} - \frac{6722790709554249635586598}{15474622355902044612636791} a + \frac{161038503947329713708893}{377429813558586453966751}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22602.3171027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.448.1, \(\Q(\zeta_{16})^+\), 4.2.14336.1, 8.4.205520896.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |