Normalized defining polynomial
\( x^{16} - 5 x^{15} - 3 x^{14} + 139 x^{13} - 825 x^{12} + 2322 x^{11} + 1617 x^{10} - 46309 x^{9} + 182354 x^{8} - 452696 x^{7} + 1527356 x^{6} - 2049201 x^{5} - 1662839 x^{4} + 8808112 x^{3} - 11939112 x^{2} - 7607472 x + 27618832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42832588164190465585875603485409=3^{8}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1648} a^{14} + \frac{11}{1648} a^{13} - \frac{295}{1648} a^{12} + \frac{159}{1648} a^{11} - \frac{301}{1648} a^{10} - \frac{137}{824} a^{9} - \frac{331}{1648} a^{8} + \frac{819}{1648} a^{7} + \frac{83}{824} a^{6} - \frac{67}{412} a^{5} - \frac{185}{412} a^{4} + \frac{783}{1648} a^{3} - \frac{423}{1648} a^{2} - \frac{97}{412} a + \frac{1}{4}$, $\frac{1}{103070248336715173006210173273961046666448108276823616} a^{15} + \frac{11298887615838152807613687678309851518022619650509}{103070248336715173006210173273961046666448108276823616} a^{14} + \frac{10820245823384553848959866672882764040484178349283607}{103070248336715173006210173273961046666448108276823616} a^{13} + \frac{2388776446681551280510147941076218583532057406821625}{103070248336715173006210173273961046666448108276823616} a^{12} - \frac{17907865499293899593782552154298941446928926260548391}{103070248336715173006210173273961046666448108276823616} a^{11} + \frac{497079966407640011629941602525668136418410615611993}{25767562084178793251552543318490261666612027069205904} a^{10} - \frac{15610498938514816243838214429746490898224037534477847}{103070248336715173006210173273961046666448108276823616} a^{9} + \frac{16773192437718307260482703140999373367467461986837757}{103070248336715173006210173273961046666448108276823616} a^{8} + \frac{6398624836540560502094829069534110631909693554000251}{25767562084178793251552543318490261666612027069205904} a^{7} - \frac{7131022731199374531009734098983205037814677109639}{62542626417909692358137241064296751617990356964092} a^{6} + \frac{1049978189600145134249653156424777324948037561127583}{25767562084178793251552543318490261666612027069205904} a^{5} - \frac{1183563936771195711251402497496095161519336013825593}{103070248336715173006210173273961046666448108276823616} a^{4} + \frac{26439239128774113166573243904831793024996349894863975}{103070248336715173006210173273961046666448108276823616} a^{3} + \frac{21508505760717960105768564991139971074186673448913487}{51535124168357586503105086636980523333224054138411808} a^{2} + \frac{69352683602068725813361771033862810705883236945079}{548246001791038154288351985499792801417277171685232} a - \frac{34850810695955387251132115088866536747483400755011}{125085252835819384716274482128593503235980713928184}$
Class group and class number
$C_{2}\times C_{34}$, which has order $68$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22316334.7724 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.2.2738019.1, 4.4.912673.1, 4.2.28227.1, 8.4.727184560303017.1, 8.0.6544661042727153.1, 8.4.7496748044361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||