Properties

Label 16.0.428...409.4
Degree $16$
Signature $[0, 8]$
Discriminant $4.283\times 10^{31}$
Root discriminant \(94.84\)
Ramified primes $3,97$
Class number $68$ (GRH)
Class group [2, 34] (GRH)
Galois group $C_2^2 : C_8$ (as 16T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832)
 
gp: K = bnfinit(y^16 - 5*y^15 - 3*y^14 + 139*y^13 - 825*y^12 + 2322*y^11 + 1617*y^10 - 46309*y^9 + 182354*y^8 - 452696*y^7 + 1527356*y^6 - 2049201*y^5 - 1662839*y^4 + 8808112*y^3 - 11939112*y^2 - 7607472*y + 27618832, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832)
 

\( x^{16} - 5 x^{15} - 3 x^{14} + 139 x^{13} - 825 x^{12} + 2322 x^{11} + 1617 x^{10} - 46309 x^{9} + \cdots + 27618832 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(42832588164190465585875603485409\) \(\medspace = 3^{8}\cdot 97^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(94.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}97^{7/8}\approx 94.8387660758292$
Ramified primes:   \(3\), \(97\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{1648}a^{14}+\frac{11}{1648}a^{13}-\frac{295}{1648}a^{12}+\frac{159}{1648}a^{11}-\frac{301}{1648}a^{10}-\frac{137}{824}a^{9}-\frac{331}{1648}a^{8}+\frac{819}{1648}a^{7}+\frac{83}{824}a^{6}-\frac{67}{412}a^{5}-\frac{185}{412}a^{4}+\frac{783}{1648}a^{3}-\frac{423}{1648}a^{2}-\frac{97}{412}a+\frac{1}{4}$, $\frac{1}{10\!\cdots\!16}a^{15}+\frac{11\!\cdots\!09}{10\!\cdots\!16}a^{14}+\frac{10\!\cdots\!07}{10\!\cdots\!16}a^{13}+\frac{23\!\cdots\!25}{10\!\cdots\!16}a^{12}-\frac{17\!\cdots\!91}{10\!\cdots\!16}a^{11}+\frac{49\!\cdots\!93}{25\!\cdots\!04}a^{10}-\frac{15\!\cdots\!47}{10\!\cdots\!16}a^{9}+\frac{16\!\cdots\!57}{10\!\cdots\!16}a^{8}+\frac{63\!\cdots\!51}{25\!\cdots\!04}a^{7}-\frac{71\!\cdots\!39}{62\!\cdots\!92}a^{6}+\frac{10\!\cdots\!83}{25\!\cdots\!04}a^{5}-\frac{11\!\cdots\!93}{10\!\cdots\!16}a^{4}+\frac{26\!\cdots\!75}{10\!\cdots\!16}a^{3}+\frac{21\!\cdots\!87}{51\!\cdots\!08}a^{2}+\frac{69\!\cdots\!79}{54\!\cdots\!32}a-\frac{34\!\cdots\!11}{12\!\cdots\!84}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{34}$, which has order $68$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!43}{51\!\cdots\!08}a^{15}-\frac{61\!\cdots\!63}{51\!\cdots\!08}a^{14}-\frac{47\!\cdots\!37}{51\!\cdots\!08}a^{13}+\frac{17\!\cdots\!69}{51\!\cdots\!08}a^{12}-\frac{94\!\cdots\!59}{51\!\cdots\!08}a^{11}+\frac{12\!\cdots\!63}{25\!\cdots\!04}a^{10}+\frac{30\!\cdots\!83}{51\!\cdots\!08}a^{9}-\frac{56\!\cdots\!71}{51\!\cdots\!08}a^{8}+\frac{98\!\cdots\!03}{25\!\cdots\!04}a^{7}-\frac{10\!\cdots\!83}{12\!\cdots\!52}a^{6}+\frac{41\!\cdots\!27}{12\!\cdots\!52}a^{5}-\frac{28\!\cdots\!67}{51\!\cdots\!08}a^{4}-\frac{18\!\cdots\!65}{51\!\cdots\!08}a^{3}+\frac{40\!\cdots\!57}{16\!\cdots\!69}a^{2}-\frac{12\!\cdots\!21}{27\!\cdots\!16}a+\frac{88\!\cdots\!13}{31\!\cdots\!46}$, $\frac{26\!\cdots\!75}{51\!\cdots\!08}a^{15}-\frac{15\!\cdots\!51}{51\!\cdots\!08}a^{14}-\frac{65\!\cdots\!01}{51\!\cdots\!08}a^{13}+\frac{40\!\cdots\!13}{51\!\cdots\!08}a^{12}-\frac{23\!\cdots\!59}{51\!\cdots\!08}a^{11}+\frac{33\!\cdots\!27}{25\!\cdots\!04}a^{10}+\frac{53\!\cdots\!19}{51\!\cdots\!08}a^{9}-\frac{14\!\cdots\!63}{51\!\cdots\!08}a^{8}+\frac{27\!\cdots\!31}{25\!\cdots\!04}a^{7}-\frac{29\!\cdots\!55}{12\!\cdots\!52}a^{6}+\frac{91\!\cdots\!03}{12\!\cdots\!52}a^{5}-\frac{63\!\cdots\!19}{51\!\cdots\!08}a^{4}-\frac{10\!\cdots\!69}{51\!\cdots\!08}a^{3}+\frac{11\!\cdots\!09}{16\!\cdots\!69}a^{2}-\frac{58\!\cdots\!73}{27\!\cdots\!16}a-\frac{42\!\cdots\!01}{31\!\cdots\!46}$, $\frac{33\!\cdots\!61}{51\!\cdots\!08}a^{15}-\frac{16\!\cdots\!97}{51\!\cdots\!08}a^{14}-\frac{16\!\cdots\!47}{51\!\cdots\!08}a^{13}+\frac{48\!\cdots\!31}{51\!\cdots\!08}a^{12}-\frac{26\!\cdots\!97}{51\!\cdots\!08}a^{11}+\frac{34\!\cdots\!97}{25\!\cdots\!04}a^{10}+\frac{95\!\cdots\!09}{51\!\cdots\!08}a^{9}-\frac{16\!\cdots\!25}{51\!\cdots\!08}a^{8}+\frac{29\!\cdots\!65}{25\!\cdots\!04}a^{7}-\frac{29\!\cdots\!55}{12\!\cdots\!84}a^{6}+\frac{10\!\cdots\!49}{12\!\cdots\!52}a^{5}-\frac{59\!\cdots\!65}{51\!\cdots\!08}a^{4}-\frac{13\!\cdots\!67}{51\!\cdots\!08}a^{3}+\frac{10\!\cdots\!43}{16\!\cdots\!69}a^{2}-\frac{25\!\cdots\!83}{27\!\cdots\!16}a-\frac{12\!\cdots\!27}{31\!\cdots\!46}$, $\frac{97\!\cdots\!85}{92\!\cdots\!44}a^{15}+\frac{21\!\cdots\!55}{46\!\cdots\!72}a^{14}-\frac{18\!\cdots\!65}{46\!\cdots\!72}a^{13}+\frac{53\!\cdots\!27}{46\!\cdots\!72}a^{12}-\frac{58\!\cdots\!11}{23\!\cdots\!36}a^{11}+\frac{63\!\cdots\!75}{92\!\cdots\!44}a^{10}+\frac{48\!\cdots\!19}{92\!\cdots\!44}a^{9}-\frac{10\!\cdots\!23}{46\!\cdots\!72}a^{8}+\frac{42\!\cdots\!75}{92\!\cdots\!44}a^{7}-\frac{99\!\cdots\!95}{46\!\cdots\!72}a^{6}+\frac{20\!\cdots\!48}{57\!\cdots\!59}a^{5}+\frac{10\!\cdots\!59}{92\!\cdots\!44}a^{4}-\frac{56\!\cdots\!93}{46\!\cdots\!72}a^{3}+\frac{19\!\cdots\!35}{92\!\cdots\!44}a^{2}+\frac{42\!\cdots\!67}{49\!\cdots\!88}a-\frac{98\!\cdots\!95}{22\!\cdots\!12}$, $\frac{15\!\cdots\!91}{36\!\cdots\!76}a^{15}+\frac{33\!\cdots\!23}{36\!\cdots\!76}a^{14}-\frac{39\!\cdots\!11}{36\!\cdots\!76}a^{13}+\frac{14\!\cdots\!03}{36\!\cdots\!76}a^{12}+\frac{12\!\cdots\!35}{36\!\cdots\!76}a^{11}-\frac{79\!\cdots\!19}{92\!\cdots\!44}a^{10}+\frac{19\!\cdots\!07}{36\!\cdots\!76}a^{9}-\frac{45\!\cdots\!09}{36\!\cdots\!76}a^{8}-\frac{25\!\cdots\!53}{92\!\cdots\!44}a^{7}+\frac{33\!\cdots\!11}{23\!\cdots\!36}a^{6}-\frac{40\!\cdots\!19}{92\!\cdots\!44}a^{5}+\frac{12\!\cdots\!49}{36\!\cdots\!76}a^{4}-\frac{13\!\cdots\!63}{36\!\cdots\!76}a^{3}+\frac{21\!\cdots\!97}{18\!\cdots\!88}a^{2}-\frac{16\!\cdots\!51}{19\!\cdots\!52}a+\frac{40\!\cdots\!63}{44\!\cdots\!24}$, $\frac{14\!\cdots\!89}{92\!\cdots\!44}a^{15}-\frac{68\!\cdots\!67}{92\!\cdots\!44}a^{14}+\frac{54\!\cdots\!07}{92\!\cdots\!44}a^{13}+\frac{11\!\cdots\!25}{92\!\cdots\!44}a^{12}-\frac{76\!\cdots\!47}{92\!\cdots\!44}a^{11}+\frac{33\!\cdots\!77}{11\!\cdots\!18}a^{10}-\frac{33\!\cdots\!63}{92\!\cdots\!44}a^{9}-\frac{12\!\cdots\!95}{92\!\cdots\!44}a^{8}+\frac{67\!\cdots\!87}{11\!\cdots\!18}a^{7}+\frac{17\!\cdots\!45}{23\!\cdots\!36}a^{6}+\frac{20\!\cdots\!49}{23\!\cdots\!36}a^{5}+\frac{38\!\cdots\!31}{92\!\cdots\!44}a^{4}-\frac{47\!\cdots\!61}{92\!\cdots\!44}a^{3}-\frac{22\!\cdots\!35}{46\!\cdots\!72}a^{2}+\frac{11\!\cdots\!77}{12\!\cdots\!97}a+\frac{57\!\cdots\!56}{56\!\cdots\!53}$, $\frac{24\!\cdots\!09}{12\!\cdots\!52}a^{15}-\frac{93\!\cdots\!17}{12\!\cdots\!52}a^{14}-\frac{21\!\cdots\!35}{12\!\cdots\!52}a^{13}+\frac{31\!\cdots\!91}{12\!\cdots\!52}a^{12}-\frac{15\!\cdots\!49}{12\!\cdots\!52}a^{11}+\frac{17\!\cdots\!07}{64\!\cdots\!76}a^{10}+\frac{91\!\cdots\!17}{12\!\cdots\!52}a^{9}-\frac{10\!\cdots\!13}{12\!\cdots\!52}a^{8}+\frac{15\!\cdots\!17}{64\!\cdots\!76}a^{7}-\frac{16\!\cdots\!25}{32\!\cdots\!38}a^{6}+\frac{35\!\cdots\!34}{16\!\cdots\!69}a^{5}-\frac{13\!\cdots\!49}{12\!\cdots\!52}a^{4}-\frac{79\!\cdots\!55}{12\!\cdots\!52}a^{3}+\frac{83\!\cdots\!04}{16\!\cdots\!69}a^{2}-\frac{11\!\cdots\!47}{68\!\cdots\!54}a-\frac{59\!\cdots\!89}{15\!\cdots\!23}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 22316334.7724 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 22316334.7724 \cdot 68}{2\cdot\sqrt{42832588164190465585875603485409}}\cr\approx \mathstrut & 0.281613566598 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 5*x^15 - 3*x^14 + 139*x^13 - 825*x^12 + 2322*x^11 + 1617*x^10 - 46309*x^9 + 182354*x^8 - 452696*x^7 + 1527356*x^6 - 2049201*x^5 - 1662839*x^4 + 8808112*x^3 - 11939112*x^2 - 7607472*x + 27618832);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_8$ (as 16T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 : C_8$
Character table for $C_2^2 : C_8$

Intermediate fields

\(\Q(\sqrt{97}) \), 4.2.2738019.1, 4.4.912673.1, 4.2.28227.1, 8.4.727184560303017.1, 8.0.6544661042727153.1, 8.4.7496748044361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: 16.8.528797384743092167726859302289.1
Minimal sibling: 16.8.528797384743092167726859302289.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ R ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(97\) Copy content Toggle raw display 97.16.14.1$x^{16} + 768 x^{15} + 258088 x^{14} + 49572096 x^{13} + 5953168060 x^{12} + 457847744256 x^{11} + 22036223404888 x^{10} + 608019502810368 x^{9} + 7433960430005160 x^{8} + 3040097514126336 x^{7} + 550905610125696 x^{6} + 57235766095872 x^{5} + 4296185158440 x^{4} + 44325875768832 x^{3} + 2119059344887056 x^{2} + 58091109365638656 x + 696714908933731396$$8$$2$$14$$C_8\times C_2$$[\ ]_{8}^{2}$