Normalized defining polynomial
\( x^{16} - x^{15} + 43 x^{14} - 76 x^{13} + 1326 x^{12} - 2203 x^{11} + 21216 x^{10} - 30672 x^{9} + 236155 x^{8} - 184658 x^{7} + 823930 x^{6} + 1914443 x^{5} - 1141852 x^{4} + 6835864 x^{3} + 5582811 x^{2} - 3295057 x + 16589329 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42832588164190465585875603485409=3^{8}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{16401318} a^{14} + \frac{20281}{381426} a^{13} - \frac{872041}{16401318} a^{12} + \frac{2268683}{5467106} a^{11} + \frac{4640047}{16401318} a^{10} + \frac{1354097}{16401318} a^{9} - \frac{24439}{5467106} a^{8} - \frac{1733903}{5467106} a^{7} + \frac{995465}{5467106} a^{6} + \frac{1545319}{16401318} a^{5} + \frac{3846125}{16401318} a^{4} - \frac{5593223}{16401318} a^{3} - \frac{7423409}{16401318} a^{2} - \frac{928397}{5467106} a + \frac{5776205}{16401318}$, $\frac{1}{77875559286888959565243643393322138267682} a^{15} - \frac{827690106968604501718387166368916}{38937779643444479782621821696661069133841} a^{14} + \frac{392275928496152959411858485856704241790}{38937779643444479782621821696661069133841} a^{13} + \frac{746895064364845174499686413478903738133}{38937779643444479782621821696661069133841} a^{12} + \frac{1578100865096469648632919100263490911839}{12979259881148159927540607232220356377947} a^{11} + \frac{12261395825962257984647375343471371999}{905529759149871622851670272015373700787} a^{10} - \frac{2088705144595343094084607261587574528569}{12979259881148159927540607232220356377947} a^{9} + \frac{897645120927268541736045396406337024417}{38937779643444479782621821696661069133841} a^{8} - \frac{84443196594020808595508910916745897483}{257866090353936952202793521169940855191} a^{7} + \frac{1486781967371696103974471259666692720753}{38937779643444479782621821696661069133841} a^{6} - \frac{11588582620062965047522269573163354095863}{38937779643444479782621821696661069133841} a^{5} + \frac{2266136645758247334179758763937541655295}{12979259881148159927540607232220356377947} a^{4} + \frac{12929923909485313454112901143204690061}{85955363451312317400931173723313618397} a^{3} + \frac{1565785538307174645727822731618281487761}{12979259881148159927540607232220356377947} a^{2} - \frac{3135409564375008681749011923040006643642}{12979259881148159927540607232220356377947} a - \frac{6648566900944276219182929131806777737}{19119950721062843006443320253700500434}$
Class group and class number
$C_{136}$, which has order $136$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1674608685207860955048770747}{14244384375735345092128018625086497} a^{15} - \frac{5251761787129308073907972723}{9496256250490230061418679083390998} a^{14} + \frac{68442893877200314455233954251}{14244384375735345092128018625086497} a^{13} - \frac{127588873855443942380973621805}{4748128125245115030709339541695499} a^{12} + \frac{1535116561460614017215832356977}{9496256250490230061418679083390998} a^{11} - \frac{11121811007919877593504744253241}{14244384375735345092128018625086497} a^{10} + \frac{37423571675159992780016157170137}{14244384375735345092128018625086497} a^{9} - \frac{322287642366965360828663832045887}{28488768751470690184256037250172994} a^{8} + \frac{413721963919784540987461228920049}{14244384375735345092128018625086497} a^{7} - \frac{1488103602391888422610035908626063}{14244384375735345092128018625086497} a^{6} + \frac{489548323915829792622695660636589}{9496256250490230061418679083390998} a^{5} - \frac{326152388840937823365962666834723}{14244384375735345092128018625086497} a^{4} - \frac{16145974096710744872692276966792423}{14244384375735345092128018625086497} a^{3} - \frac{2427590921790621396606783103826969}{28488768751470690184256037250172994} a^{2} - \frac{2270338309686647187366079162180465}{4748128125245115030709339541695499} a - \frac{9848282116642884068433075004886}{3497270900008677901332683188089} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38023530.1922 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-291}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{97})\), 4.4.912673.1, 4.0.8214057.1, 8.0.67470732399249.1, 8.4.727184560303017.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.8.7.3 | $x^{8} - 60625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.3 | $x^{8} - 60625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |