Normalized defining polynomial
\( x^{16} + 68 x^{14} - 44 x^{13} + 1724 x^{12} + 220 x^{11} + 18902 x^{10} + 27576 x^{9} + 135322 x^{8} + 252364 x^{7} + 1018278 x^{6} + 771132 x^{5} + 5379139 x^{4} + 1006896 x^{3} + 14554588 x^{2} + 957816 x + 15982929 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428196565723310037401600000000=2^{32}\cdot 5^{8}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{368234072365984768549076701355703422596579099965303} a^{15} - \frac{38149243347625969288449099041468154144376718836780}{122744690788661589516358900451901140865526366655101} a^{14} + \frac{45336063488449441327928818748387538901951914787238}{368234072365984768549076701355703422596579099965303} a^{13} - \frac{150983569127317778667082925967296782284124580580662}{368234072365984768549076701355703422596579099965303} a^{12} - \frac{83089897946291665585414371348138802384610442897598}{368234072365984768549076701355703422596579099965303} a^{11} + \frac{2273540313728802916473572113927672997904205195489}{368234072365984768549076701355703422596579099965303} a^{10} + \frac{29215423353641192906973850577576114548312134271934}{368234072365984768549076701355703422596579099965303} a^{9} + \frac{11741726675214697043864649348209554705194443521986}{122744690788661589516358900451901140865526366655101} a^{8} + \frac{72041512887951696051385790077275959486674831150669}{368234072365984768549076701355703422596579099965303} a^{7} - \frac{151555432389682934475157206555034138143548446667897}{368234072365984768549076701355703422596579099965303} a^{6} - \frac{42354536438611609386020234013636728636496008326338}{122744690788661589516358900451901140865526366655101} a^{5} - \frac{2015087730137302202728536441376475248261171319496}{5336725686463547370276473932691353950675059419787} a^{4} + \frac{112366918201622398744241206430439541502065888756693}{368234072365984768549076701355703422596579099965303} a^{3} - \frac{35889140662414425948000488383458006370958893958760}{122744690788661589516358900451901140865526366655101} a^{2} + \frac{163652996902227000814000799699318846954174926961698}{368234072365984768549076701355703422596579099965303} a - \frac{29472071568732941904647397660608914205358198332444}{122744690788661589516358900451901140865526366655101}$
Class group and class number
$C_{2}\times C_{2}\times C_{2478}$, which has order $9912$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9562.41394678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 761 | Data not computed | ||||||