Normalized defining polynomial
\( x^{16} + 78 x^{14} - 60 x^{13} + 2453 x^{12} - 3192 x^{11} + 41698 x^{10} - 66432 x^{9} + 417537 x^{8} - 703088 x^{7} + 2478520 x^{6} - 3941164 x^{5} + 8382885 x^{4} - 11014656 x^{3} + 14677804 x^{2} - 10467112 x + 5722919 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428196565723310037401600000000=2^{32}\cdot 5^{8}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2642953} a^{14} + \frac{1318125}{2642953} a^{13} - \frac{399065}{2642953} a^{12} + \frac{532319}{2642953} a^{11} + \frac{558097}{2642953} a^{10} - \frac{765719}{2642953} a^{9} + \frac{1029580}{2642953} a^{8} + \frac{175198}{2642953} a^{7} + \frac{1029876}{2642953} a^{6} - \frac{148167}{2642953} a^{5} + \frac{59462}{2642953} a^{4} - \frac{962742}{2642953} a^{3} - \frac{203824}{2642953} a^{2} - \frac{347380}{2642953} a + \frac{116070}{2642953}$, $\frac{1}{1564350389543534173532721394356042632553} a^{15} + \frac{290153777650913450622349689363581}{1564350389543534173532721394356042632553} a^{14} - \frac{108172867152996490426483338135403570613}{1564350389543534173532721394356042632553} a^{13} - \frac{403122628627347856463143252519183782391}{1564350389543534173532721394356042632553} a^{12} + \frac{38891975181269966622462125696256163502}{521450129847844724510907131452014210851} a^{11} + \frac{831182108054485504418063987411968689}{521450129847844724510907131452014210851} a^{10} - \frac{92699466627649063160317786979939350487}{1564350389543534173532721394356042632553} a^{9} - \frac{22440695496911040925827218273407755352}{1564350389543534173532721394356042632553} a^{8} - \frac{382522272579193804210467307356843323429}{1564350389543534173532721394356042632553} a^{7} - \frac{83546249831587917939266934819502208380}{521450129847844724510907131452014210851} a^{6} + \frac{730235895645330167990867582438142369748}{1564350389543534173532721394356042632553} a^{5} + \frac{308985638172101517412319541618317657314}{1564350389543534173532721394356042632553} a^{4} - \frac{47625274031121935297865140092497064576}{1564350389543534173532721394356042632553} a^{3} - \frac{750565522638309181684759216165159797542}{1564350389543534173532721394356042632553} a^{2} + \frac{118175479238191227167077843835088127568}{521450129847844724510907131452014210851} a + \frac{32873040721240082611280663515325506190}{1564350389543534173532721394356042632553}$
Class group and class number
$C_{2}\times C_{2}\times C_{3198}$, which has order $12792$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9562.41394678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 761 | Data not computed | ||||||