Normalized defining polynomial
\( x^{16} + 168 x^{14} - 40 x^{13} + 14560 x^{12} - 880 x^{11} + 823048 x^{10} + 177240 x^{9} + 32307694 x^{8} + 15174880 x^{7} + 891306872 x^{6} + 575603880 x^{5} + 16700763120 x^{4} + 11127338960 x^{3} + 190440765592 x^{2} + 87988803560 x + 988915277201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4278453346814084509597696000000000000=2^{48}\cdot 5^{12}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4240=2^{4}\cdot 5\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4240}(1,·)$, $\chi_{4240}(2437,·)$, $\chi_{4240}(2119,·)$, $\chi_{4240}(2121,·)$, $\chi_{4240}(1803,·)$, $\chi_{4240}(4239,·)$, $\chi_{4240}(849,·)$, $\chi_{4240}(3923,·)$, $\chi_{4240}(2969,·)$, $\chi_{4240}(2013,·)$, $\chi_{4240}(4133,·)$, $\chi_{4240}(107,·)$, $\chi_{4240}(2227,·)$, $\chi_{4240}(1271,·)$, $\chi_{4240}(317,·)$, $\chi_{4240}(3391,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{8} - \frac{1}{12}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{1}{12} a^{3} - \frac{1}{12} a^{2} - \frac{11}{24} a - \frac{3}{8}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{8} + \frac{11}{24} a^{2} - \frac{11}{24}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{3}{8} a^{3} - \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{3}{8}$, $\frac{1}{72} a^{12} + \frac{1}{72} a^{10} - \frac{1}{18} a^{6} + \frac{1}{24} a^{4} + \frac{31}{72} a^{2} - \frac{4}{9}$, $\frac{1}{432} a^{13} + \frac{1}{432} a^{12} - \frac{1}{54} a^{11} + \frac{1}{108} a^{10} - \frac{1}{48} a^{9} - \frac{1}{48} a^{8} + \frac{2}{27} a^{7} + \frac{1}{54} a^{6} - \frac{23}{144} a^{5} - \frac{5}{48} a^{4} - \frac{11}{27} a^{3} - \frac{53}{108} a^{2} - \frac{59}{432} a - \frac{35}{432}$, $\frac{1}{82766827728} a^{14} + \frac{46150769}{82766827728} a^{13} - \frac{127743601}{20691706932} a^{12} + \frac{607955263}{41383413864} a^{11} - \frac{1314368537}{82766827728} a^{10} + \frac{11482735}{9196314192} a^{9} - \frac{256604195}{41383413864} a^{8} + \frac{983747449}{20691706932} a^{7} + \frac{316305983}{82766827728} a^{6} + \frac{5680318957}{27588942576} a^{5} + \frac{472183637}{10345853466} a^{4} - \frac{15442170917}{41383413864} a^{3} - \frac{31619640583}{82766827728} a^{2} + \frac{832981877}{6366679056} a - \frac{18794137819}{41383413864}$, $\frac{1}{102978326222399470061780331237412637429393136} a^{15} - \frac{176342648374283137556526318592985}{34326108740799823353926777079137545809797712} a^{14} - \frac{490676758097875393578494177681987154629}{578529922597749831807754669873104704659512} a^{13} + \frac{30272956143135344920309510616102737439722}{6436145388899966878861270702338289839337071} a^{12} - \frac{630407587844665031809583844242468438090791}{34326108740799823353926777079137545809797712} a^{11} - \frac{1993628414826809943049137207220939274254577}{102978326222399470061780331237412637429393136} a^{10} + \frac{518854453015139162340926921253174593057929}{51489163111199735030890165618706318714696568} a^{9} + \frac{30567022501086775565410108803318384823889}{953503020577772870942410474420487383605492} a^{8} + \frac{55703696368451073586227709534073784386331}{1271337360770363827923213965893983178140656} a^{7} - \frac{4002828055614812328469661802707222266756729}{102978326222399470061780331237412637429393136} a^{6} + \frac{3602193099105315162203299424055581816355449}{51489163111199735030890165618706318714696568} a^{5} + \frac{268858581654024349018656738502543234422947}{4290763592599977919240847134892193226224714} a^{4} + \frac{12084916236648487989210038063609853412778833}{102978326222399470061780331237412637429393136} a^{3} - \frac{1818389936658065031414125341081692174591299}{102978326222399470061780331237412637429393136} a^{2} + \frac{4796912662904314350227818482413457200033405}{17163054370399911676963388539568772904898856} a + \frac{138672447319137678625586358359778710340365}{289264961298874915903877334936552352329756}$
Class group and class number
$C_{2}\times C_{8}\times C_{24}\times C_{44520}$, which has order $17095680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85299.42553126559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |