Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 96 x^{13} + 172 x^{12} - 128 x^{11} - 88 x^{10} + 432 x^{9} - 108 x^{8} - 288 x^{7} + 1060 x^{6} - 1544 x^{5} + 1244 x^{4} - 536 x^{3} + 352 x^{2} - 600 x + 1511 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4276439742589131330420736=2^{44}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{258} a^{14} - \frac{1}{129} a^{13} - \frac{4}{129} a^{12} + \frac{1}{43} a^{11} + \frac{17}{129} a^{10} - \frac{5}{43} a^{9} + \frac{21}{86} a^{8} + \frac{25}{129} a^{7} + \frac{37}{86} a^{6} + \frac{34}{129} a^{5} - \frac{53}{129} a^{4} + \frac{5}{43} a^{3} + \frac{1}{3} a^{2} - \frac{17}{129} a + \frac{35}{86}$, $\frac{1}{40329997776325542545862} a^{15} + \frac{6651159825831394571}{20164998888162771272931} a^{14} - \frac{1417241299141061843093}{40329997776325542545862} a^{13} - \frac{731162473473795649301}{20164998888162771272931} a^{12} - \frac{912860027661873930419}{40329997776325542545862} a^{11} + \frac{2943632092112431020733}{20164998888162771272931} a^{10} + \frac{2489178441160336776722}{20164998888162771272931} a^{9} - \frac{1614365733166642015655}{13443332592108514181954} a^{8} + \frac{419061458514082825523}{40329997776325542545862} a^{7} + \frac{1676144212853378759318}{6721666296054257090977} a^{6} - \frac{1222916660188214875105}{40329997776325542545862} a^{5} - \frac{3210828449583576922174}{6721666296054257090977} a^{4} - \frac{892955654193740693113}{1920476084586930597422} a^{3} + \frac{2305235721443870860993}{20164998888162771272931} a^{2} + \frac{33168251304621561194}{960238042293465298711} a - \frac{15128407488780416402843}{40329997776325542545862}$
Class group and class number
$C_{2}\times C_{16}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24443.2023421 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,Z/4)$ (as 16T186):
| A solvable group of order 96 |
| The 14 conjugacy class representatives for $\GL(2,Z/4)$ |
| Character table for $\GL(2,Z/4)$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.80896.1, 4.0.80896.3, 8.8.6544162816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.0.2039165374083104768.1, 12.0.206497759400820736.1, 12.0.825991037603282944.1, 12.0.206497759400820736.2 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |