Normalized defining polynomial
\( x^{16} - 3 x^{15} - 26 x^{14} + 165 x^{13} + 184 x^{12} - 2943 x^{11} + 3213 x^{10} + 26164 x^{9} - 64784 x^{8} - 95606 x^{7} + 483073 x^{6} - 91475 x^{5} - 1637207 x^{4} + 1717890 x^{3} + 1643530 x^{2} - 3791354 x + 2065061 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4267966768632939662191535801=23^{12}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{59} a^{13} + \frac{16}{59} a^{12} + \frac{6}{59} a^{11} - \frac{13}{59} a^{10} + \frac{17}{59} a^{9} + \frac{24}{59} a^{8} + \frac{14}{59} a^{7} + \frac{9}{59} a^{6} - \frac{9}{59} a^{5} - \frac{26}{59} a^{4} + \frac{7}{59} a^{3} + \frac{22}{59} a^{2} + \frac{23}{59} a + \frac{27}{59}$, $\frac{1}{59} a^{14} - \frac{14}{59} a^{12} + \frac{9}{59} a^{11} - \frac{11}{59} a^{10} - \frac{12}{59} a^{9} - \frac{16}{59} a^{8} + \frac{21}{59} a^{7} + \frac{24}{59} a^{6} + \frac{10}{59} a^{4} + \frac{28}{59} a^{3} + \frac{25}{59} a^{2} + \frac{13}{59} a - \frac{19}{59}$, $\frac{1}{1049375208215492723761909368479337011} a^{15} - \frac{1128267425700953991047249161726022}{1049375208215492723761909368479337011} a^{14} + \frac{5221136777329201711153825964672912}{1049375208215492723761909368479337011} a^{13} - \frac{66521148381173768129393215917540912}{1049375208215492723761909368479337011} a^{12} - \frac{76383336736376396338104473404872184}{1049375208215492723761909368479337011} a^{11} + \frac{112192400349287158230916081369954148}{1049375208215492723761909368479337011} a^{10} - \frac{502373985996084598638737176434882097}{1049375208215492723761909368479337011} a^{9} - \frac{499286628705450401769312163165233830}{1049375208215492723761909368479337011} a^{8} + \frac{385177951628035183227307563993069286}{1049375208215492723761909368479337011} a^{7} + \frac{332151941929641932403975050016366030}{1049375208215492723761909368479337011} a^{6} - \frac{8136089230486883687080534966925777}{22327132089691334548125731244241213} a^{5} + \frac{409466297505834001855452706050903224}{1049375208215492723761909368479337011} a^{4} - \frac{281158301630977802160541086786005583}{1049375208215492723761909368479337011} a^{3} - \frac{195381389217702340916749136666375732}{1049375208215492723761909368479337011} a^{2} + \frac{502517446119274396649634924252010834}{1049375208215492723761909368479337011} a + \frac{250733679618226474106627316701819066}{1049375208215492723761909368479337011}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6935697.82772 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.21689.1, 8.0.19286921561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |