Normalized defining polynomial
\( x^{16} + 136 x^{14} - 58 x^{13} + 7596 x^{12} - 6354 x^{11} + 225107 x^{10} - 262273 x^{9} + 3807771 x^{8} - 5085440 x^{7} + 36338415 x^{6} - 45893065 x^{5} + 174591890 x^{4} - 139729010 x^{3} + 343797955 x^{2} - 127293585 x + 222521795 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42657346521926437784823093798828125=5^{11}\cdot 29^{3}\cdot 101^{8}\cdot 149^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 101, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{24} a^{14} + \frac{1}{24} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{3} a^{8} + \frac{1}{24} a^{7} - \frac{1}{2} a^{6} + \frac{11}{24} a^{5} - \frac{5}{12} a^{4} + \frac{1}{4} a^{3} - \frac{1}{12} a^{2} + \frac{1}{12} a + \frac{7}{24}$, $\frac{1}{37619102941759905930969876219389682408750385146834936} a^{15} - \frac{27928487645331650650425648403826860551938328509443}{1567462622573329413790411509141236767031266047784789} a^{14} - \frac{4394072411833581321384183069391525614611690425941025}{37619102941759905930969876219389682408750385146834936} a^{13} + \frac{507235666191683463226775516422614246948052515462891}{12539700980586635310323292073129894136250128382278312} a^{12} + \frac{735469592134801955500079555694040181555965597471201}{3134925245146658827580823018282473534062532095569578} a^{11} + \frac{1888682386967646844137943182160555622816681573780923}{12539700980586635310323292073129894136250128382278312} a^{10} + \frac{4688499970180709925267358400394762386118349780280371}{18809551470879952965484938109694841204375192573417468} a^{9} + \frac{3658375196753179256735360271518403956225626792540985}{37619102941759905930969876219389682408750385146834936} a^{8} - \frac{12759101500979196434781437195931828461712654291597457}{37619102941759905930969876219389682408750385146834936} a^{7} + \frac{1204980814709693772650607994947760344733640965062899}{37619102941759905930969876219389682408750385146834936} a^{6} - \frac{6065104120381171382391719703406461667879556125922499}{12539700980586635310323292073129894136250128382278312} a^{5} + \frac{4122207178473683123102021656347105628062170282037601}{9404775735439976482742469054847420602187596286708734} a^{4} + \frac{816836720901995520257366131817180812010237440290380}{4702387867719988241371234527423710301093798143354367} a^{3} - \frac{4438678574181652550328902259477902538626995909289657}{9404775735439976482742469054847420602187596286708734} a^{2} + \frac{18254927132112630959676759939182892635577725593629173}{37619102941759905930969876219389682408750385146834936} a - \frac{7020773638194523923680855668137061215957277882801363}{37619102941759905930969876219389682408750385146834936}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{12}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 250214598.048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1642 are not computed |
| Character table for t16n1642 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.0.13912283190625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $149$ | 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.4.3.3 | $x^{4} + 298$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 149.8.0.1 | $x^{8} - x + 11$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |