Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} + 321 x^{12} - 652 x^{11} + 1115 x^{10} - 1648 x^{9} + 2235 x^{8} - 2792 x^{7} + 3341 x^{6} - 3586 x^{5} + 3608 x^{4} - 2978 x^{3} + 2151 x^{2} - 1020 x + 355 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4229909006359687890625=5^{8}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} + \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{50} a^{13} + \frac{1}{50} a^{12} + \frac{1}{50} a^{11} + \frac{1}{50} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{4}{25} a^{7} + \frac{13}{50} a^{6} + \frac{3}{25} a^{5} - \frac{12}{25} a^{4} - \frac{2}{25} a^{3} - \frac{9}{50} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{41350} a^{14} - \frac{7}{41350} a^{13} + \frac{123}{41350} a^{12} - \frac{647}{41350} a^{11} - \frac{283}{8270} a^{10} - \frac{3918}{20675} a^{9} + \frac{3689}{41350} a^{8} + \frac{2377}{20675} a^{7} - \frac{963}{41350} a^{6} - \frac{4697}{41350} a^{5} + \frac{509}{20675} a^{4} + \frac{10079}{20675} a^{3} + \frac{821}{20675} a^{2} + \frac{971}{8270} a + \frac{921}{4135}$, $\frac{1}{26836150} a^{15} + \frac{317}{26836150} a^{14} - \frac{237013}{26836150} a^{13} - \frac{558884}{13418075} a^{12} + \frac{597842}{13418075} a^{11} + \frac{47151}{2439650} a^{10} + \frac{4095711}{26836150} a^{9} - \frac{1054832}{13418075} a^{8} + \frac{11345899}{26836150} a^{7} + \frac{5106741}{13418075} a^{6} - \frac{10352343}{26836150} a^{5} + \frac{20319}{227425} a^{4} + \frac{7418551}{26836150} a^{3} + \frac{36559}{1073446} a^{2} + \frac{807418}{2683615} a + \frac{138742}{536723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52907.8367664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.643938125.1, 8.0.643938125.1, 8.4.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |