Normalized defining polynomial
\( x^{16} - 2 x^{15} + 20 x^{14} - 5 x^{13} + 99 x^{12} + 115 x^{11} + 221 x^{10} + 268 x^{9} - 469 x^{8} - 772 x^{7} - 2082 x^{6} - 2549 x^{5} + 6725 x^{4} + 2675 x^{3} + 1273 x^{2} + 270 x + 100 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42287613544824591671753041=37^{4}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{80} a^{12} - \frac{1}{40} a^{11} + \frac{3}{40} a^{10} - \frac{1}{80} a^{9} - \frac{1}{40} a^{8} - \frac{1}{16} a^{7} - \frac{37}{80} a^{6} - \frac{29}{80} a^{5} + \frac{19}{80} a^{4} - \frac{33}{80} a^{3} - \frac{7}{80} a^{2} + \frac{11}{40} a + \frac{1}{4}$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{12} + \frac{1}{40} a^{11} + \frac{1}{32} a^{10} + \frac{37}{160} a^{9} - \frac{7}{160} a^{8} - \frac{1}{80} a^{7} + \frac{27}{80} a^{6} - \frac{5}{16} a^{5} + \frac{33}{80} a^{4} + \frac{1}{4} a^{3} + \frac{11}{32} a^{2} - \frac{39}{80} a - \frac{3}{8}$, $\frac{1}{1920} a^{14} + \frac{1}{960} a^{13} + \frac{1}{384} a^{12} - \frac{31}{1920} a^{11} - \frac{11}{480} a^{10} + \frac{23}{96} a^{9} - \frac{191}{1920} a^{8} + \frac{29}{160} a^{7} - \frac{53}{160} a^{6} - \frac{7}{48} a^{5} + \frac{97}{960} a^{4} - \frac{37}{1920} a^{3} + \frac{33}{640} a^{2} + \frac{377}{960} a - \frac{29}{96}$, $\frac{1}{180735963202571946240} a^{15} - \frac{37953619763136719}{180735963202571946240} a^{14} - \frac{146799495597774303}{60245321067523982080} a^{13} + \frac{41020976373716989}{15061330266880995520} a^{12} - \frac{1316896072180020665}{36147192640514389248} a^{11} - \frac{921369606510198331}{7530665133440497760} a^{10} - \frac{14772712731325096489}{60245321067523982080} a^{9} - \frac{26145498417733141}{180735963202571946240} a^{8} + \frac{460323842725988765}{1506133026688099552} a^{7} + \frac{20600845449392682461}{45183990800642986560} a^{6} + \frac{2033697844809122071}{30122660533761991040} a^{5} + \frac{851503039000630951}{12049064213504796416} a^{4} + \frac{1826585148712553869}{4518399080064298656} a^{3} + \frac{72101005018202595151}{180735963202571946240} a^{2} + \frac{32205968057486402213}{90367981601285973120} a + \frac{1526146761952179485}{9036798160128597312}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 471474.859461 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.62197.1, 4.4.68921.1, 4.0.2550077.1, 8.0.158607139169.1 x2, 8.4.175753856917.1 x2, 8.0.6502892705929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |