Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 68 x^{13} + 71 x^{12} + 20 x^{11} - 120 x^{10} + 116 x^{9} + 57 x^{8} - 140 x^{7} + 128 x^{6} + 44 x^{5} - 69 x^{4} + 112 x^{3} + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42286532693852160000=2^{32}\cdot 3^{8}\cdot 5^{4}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{63} a^{13} - \frac{1}{21} a^{12} - \frac{4}{63} a^{11} + \frac{10}{63} a^{10} - \frac{26}{63} a^{9} - \frac{19}{63} a^{8} + \frac{1}{7} a^{7} + \frac{1}{9} a^{6} - \frac{2}{21} a^{5} - \frac{2}{63} a^{4} + \frac{3}{7} a^{3} + \frac{11}{63} a^{2} - \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{945} a^{14} - \frac{4}{189} a^{12} - \frac{31}{315} a^{11} + \frac{67}{945} a^{10} + \frac{232}{945} a^{9} - \frac{398}{945} a^{8} + \frac{121}{315} a^{7} - \frac{118}{945} a^{6} + \frac{52}{189} a^{5} + \frac{37}{135} a^{4} - \frac{349}{945} a^{3} - \frac{1}{105} a^{2} + \frac{14}{135} a - \frac{14}{135}$, $\frac{1}{777391965} a^{15} - \frac{2794}{13176135} a^{14} + \frac{151373}{22211199} a^{13} + \frac{23554522}{777391965} a^{12} - \frac{1358371}{22211199} a^{11} + \frac{3234808}{22211199} a^{10} - \frac{43337516}{155478393} a^{9} - \frac{292097189}{777391965} a^{8} - \frac{74981716}{777391965} a^{7} - \frac{42145217}{777391965} a^{6} - \frac{29156689}{86376885} a^{5} + \frac{121324169}{259130655} a^{4} + \frac{14782924}{155478393} a^{3} - \frac{309861613}{777391965} a^{2} - \frac{4273811}{37018665} a + \frac{34995709}{111055995}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{495748}{22211199} a^{15} - \frac{2564924}{13176135} a^{14} + \frac{136796332}{155478393} a^{13} - \frac{364376144}{155478393} a^{12} + \frac{3081833828}{777391965} a^{11} - \frac{2804634017}{777391965} a^{10} + \frac{410169013}{777391965} a^{9} + \frac{2820901673}{777391965} a^{8} - \frac{2387067518}{777391965} a^{7} - \frac{1197820387}{777391965} a^{6} + \frac{103392568}{17275377} a^{5} - \frac{1217672513}{259130655} a^{4} + \frac{949916164}{777391965} a^{3} + \frac{1847806129}{777391965} a^{2} - \frac{103734703}{37018665} a + \frac{187545464}{111055995} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10473.1096153 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8:C_2^2$ (as 16T69):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2\times Q_8:C_2^2$ |
| Character table for $C_2\times Q_8:C_2^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |