Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 8 x^{13} - 8 x^{12} + 96 x^{11} - 170 x^{10} + 60 x^{9} + 169 x^{8} - 624 x^{7} + 1082 x^{6} - 92 x^{5} - 1824 x^{4} + 1596 x^{3} + 388 x^{2} - 1020 x + 433 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42286532693852160000=2^{32}\cdot 3^{8}\cdot 5^{4}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{4}{9} a^{7} - \frac{1}{6} a^{5} + \frac{1}{18} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} + \frac{7}{18} a + \frac{7}{18}$, $\frac{1}{18} a^{10} - \frac{4}{9} a^{7} - \frac{1}{6} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{5}{18} a^{2} - \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{8} - \frac{1}{6} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} + \frac{5}{18} a^{4} + \frac{5}{18} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{1}{2}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{9} + \frac{1}{27} a^{8} - \frac{11}{27} a^{7} + \frac{1}{27} a^{6} + \frac{5}{54} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{27} a^{2} - \frac{11}{54} a - \frac{17}{54}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{10} - \frac{1}{54} a^{9} - \frac{1}{54} a^{8} + \frac{13}{27} a^{7} + \frac{23}{54} a^{6} - \frac{7}{18} a^{5} + \frac{1}{18} a^{4} - \frac{5}{27} a^{3} - \frac{5}{54} a^{2} - \frac{10}{27} a + \frac{5}{18}$, $\frac{1}{2430} a^{14} + \frac{8}{1215} a^{13} + \frac{2}{1215} a^{12} + \frac{5}{243} a^{11} - \frac{13}{1215} a^{10} - \frac{1}{45} a^{9} + \frac{17}{405} a^{8} + \frac{53}{405} a^{7} - \frac{107}{243} a^{6} + \frac{113}{243} a^{5} + \frac{511}{1215} a^{4} - \frac{4}{135} a^{3} + \frac{157}{2430} a^{2} + \frac{11}{243} a + \frac{317}{1215}$, $\frac{1}{479417130} a^{15} + \frac{7688}{239708565} a^{14} - \frac{330448}{239708565} a^{13} - \frac{251566}{47941713} a^{12} - \frac{3804928}{239708565} a^{11} + \frac{2194186}{79902855} a^{10} - \frac{1294408}{79902855} a^{9} - \frac{8387699}{159805710} a^{8} - \frac{20344562}{47941713} a^{7} + \frac{7200659}{47941713} a^{6} + \frac{16716406}{239708565} a^{5} - \frac{38775719}{159805710} a^{4} + \frac{4198117}{479417130} a^{3} + \frac{19374983}{47941713} a^{2} + \frac{69136892}{239708565} a + \frac{3472957}{31961142}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{492253}{239708565} a^{15} + \frac{1298039}{95883426} a^{14} - \frac{6201349}{239708565} a^{13} + \frac{15245999}{479417130} a^{12} - \frac{4568257}{239708565} a^{11} - \frac{42439969}{159805710} a^{10} + \frac{116911213}{159805710} a^{9} - \frac{39603391}{79902855} a^{8} - \frac{39686281}{239708565} a^{7} + \frac{149716663}{95883426} a^{6} - \frac{2169935437}{479417130} a^{5} + \frac{230938889}{79902855} a^{4} + \frac{1058998283}{239708565} a^{3} - \frac{1312038434}{239708565} a^{2} + \frac{38516581}{479417130} a + \frac{244914083}{159805710} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31622.0541047 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8:C_2^2$ (as 16T69):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2\times Q_8:C_2^2$ |
| Character table for $C_2\times Q_8:C_2^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |