Properties

Label 16.0.42098158229...0336.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 19^{8}$
Root discriminant $39.95$
Ramified primes $2, 3, 7, 19$
Class number $32$ (GRH)
Class group $[4, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1449616, 0, -672308, 0, 292049, 0, -98244, 0, 26732, 0, -4686, 0, 524, 0, -32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 32*x^14 + 524*x^12 - 4686*x^10 + 26732*x^8 - 98244*x^6 + 292049*x^4 - 672308*x^2 + 1449616)
 
gp: K = bnfinit(x^16 - 32*x^14 + 524*x^12 - 4686*x^10 + 26732*x^8 - 98244*x^6 + 292049*x^4 - 672308*x^2 + 1449616, 1)
 

Normalized defining polynomial

\( x^{16} - 32 x^{14} + 524 x^{12} - 4686 x^{10} + 26732 x^{8} - 98244 x^{6} + 292049 x^{4} - 672308 x^{2} + 1449616 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(42098158229810084367630336=2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 19^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1596=2^{2}\cdot 3\cdot 7\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{1596}(1,·)$, $\chi_{1596}(1217,·)$, $\chi_{1596}(265,·)$, $\chi_{1596}(1483,·)$, $\chi_{1596}(911,·)$, $\chi_{1596}(533,·)$, $\chi_{1596}(1177,·)$, $\chi_{1596}(797,·)$, $\chi_{1596}(799,·)$, $\chi_{1596}(1595,·)$, $\chi_{1596}(419,·)$, $\chi_{1596}(1063,·)$, $\chi_{1596}(685,·)$, $\chi_{1596}(113,·)$, $\chi_{1596}(1331,·)$, $\chi_{1596}(379,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{140} a^{10} + \frac{13}{140} a^{8} - \frac{9}{35} a^{6} - \frac{23}{140} a^{4} - \frac{59}{140} a^{2} + \frac{1}{5}$, $\frac{1}{140} a^{11} + \frac{13}{140} a^{9} + \frac{17}{70} a^{7} - \frac{23}{140} a^{5} - \frac{59}{140} a^{3} - \frac{3}{10} a$, $\frac{1}{420} a^{12} - \frac{1}{420} a^{10} + \frac{9}{140} a^{8} + \frac{61}{420} a^{6} + \frac{41}{140} a^{4} + \frac{17}{60} a^{2} + \frac{1}{15}$, $\frac{1}{36120} a^{13} + \frac{1}{7224} a^{11} - \frac{17}{344} a^{9} - \frac{283}{7224} a^{7} + \frac{1147}{2408} a^{5} + \frac{667}{7224} a^{3} + \frac{296}{645} a$, $\frac{1}{378540506106840} a^{14} - \frac{6362068927}{25236033740456} a^{12} - \frac{634482942073}{378540506106840} a^{10} - \frac{41217253534019}{378540506106840} a^{8} + \frac{4677910614053}{34412773282440} a^{6} - \frac{133334981841361}{378540506106840} a^{4} + \frac{14286611380719}{31545042175570} a^{2} - \frac{38339669398}{157201206855}$, $\frac{1}{2649783542747880} a^{15} + \frac{10109977193}{883261180915960} a^{13} - \frac{1082679926093}{529956708549576} a^{11} + \frac{8507909895665}{529956708549576} a^{9} + \frac{1239695002981}{48177882595416} a^{7} - \frac{250420906157405}{529956708549576} a^{5} + \frac{75825643824223}{220815295228990} a^{3} + \frac{19353475451714}{47317563263355} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{4516837}{3659922020370} a^{15} - \frac{223870411}{4879896027160} a^{13} + \frac{11237008757}{14639688081480} a^{11} - \frac{98632083719}{14639688081480} a^{9} + \frac{38748725873}{1330880734680} a^{7} - \frac{857468972971}{14639688081480} a^{5} + \frac{77719733507}{975979205432} a^{3} - \frac{213697252649}{522846002910} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 925240.331074 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{399}) \), \(\Q(\sqrt{-399}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{133}) \), \(\Q(\sqrt{-133}) \), \(\Q(\sqrt{19}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{399})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{133})\), \(\Q(\sqrt{3}, \sqrt{133})\), \(\Q(\sqrt{-3}, \sqrt{-133})\), \(\Q(\sqrt{3}, \sqrt{-133})\), \(\Q(\sqrt{-3}, \sqrt{133})\), \(\Q(i, \sqrt{19})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{57})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{19}, \sqrt{21})\), \(\Q(\sqrt{-19}, \sqrt{-21})\), \(\Q(\sqrt{7}, \sqrt{57})\), \(\Q(\sqrt{-7}, \sqrt{-57})\), \(\Q(\sqrt{19}, \sqrt{-21})\), \(\Q(\sqrt{-19}, \sqrt{21})\), \(\Q(\sqrt{-7}, \sqrt{57})\), \(\Q(\sqrt{7}, \sqrt{-57})\), \(\Q(\sqrt{3}, \sqrt{19})\), \(\Q(\sqrt{3}, \sqrt{-19})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{19})\), \(\Q(\sqrt{-3}, \sqrt{-19})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{7}, \sqrt{19})\), \(\Q(\sqrt{-7}, \sqrt{-19})\), \(\Q(\sqrt{21}, \sqrt{57})\), \(\Q(\sqrt{-21}, \sqrt{-57})\), \(\Q(\sqrt{-7}, \sqrt{19})\), \(\Q(\sqrt{7}, \sqrt{-19})\), \(\Q(\sqrt{21}, \sqrt{-57})\), \(\Q(\sqrt{-21}, \sqrt{57})\), 8.0.6488309350656.10, 8.0.6488309350656.2, 8.0.6488309350656.8, 8.0.2702336256.1, 8.0.49787136.1, 8.0.80102584576.1, 8.0.6488309350656.3, 8.8.6488309350656.1, 8.0.6488309350656.7, 8.0.6488309350656.9, 8.0.6488309350656.4, 8.0.6488309350656.5, 8.0.6488309350656.6, 8.0.6488309350656.1, 8.0.25344958401.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$